Cover Image

Reduced Levels of miR–28 and miR–200a Act as Predictor Biomarkers of Aggressive Clinicopathological Characteristics in Gastric Cancer Patients

Farhad Jeddi, Shahriar Alipour, Nowruz Najafzadeh, Mehdi Dadashpour, Farhad Pouremamali, Mohammad Reza Sadeghi, Nasser Samadi, Narges Soozangar, Amir Mahdi Khamaneh
Background: MicroRNAs (miRNAs) play critical roles in different pathological processes including cancer development and progression. To find novel molecular diagnostic and prognostic markers and promising therapeutic tools for gastric cancer (GC), we aimed to investigate the relationship of the expression levels of miR–28–5p or miR–200a–3p with the clinicopathological criteria and to explore their impacts on the progression of human GC. Materials and Methods: Quantitative RT–PCR was performed to analyze miR–28 and miR–200a expression in 60 GC and 60 non–GC tissue samples. Result: Our results revealed that the expressions of miR–200a and miR–28 were significantly downregulated in GC in comparison with non–GC tissues. Tumors with low miR–28 expression had larger tumor size, more advanced histological grade, and a higher incidence of lymph node and distal metastasis than the tumors with high miR–28 expressions. Furthermore, receiver operating characteristic (ROC) analyses demonstrate that the expression of miR–28 is a predictive biomarker allows predicting the histological grade, tumor size, and occurrence of nodal and distal metastases. We also found a significant inverse association between miR–200a expression and the rate of lymph node metastasis (p = 0.010, r = –0.334). Conclusion: Our findings suggest that the miR–28 and miR–200a have tumor–suppressor functions and may be considered as potential biomarkers for gastric cancer diagnosis and prognosis.[GMJ.2019;8:e1329]
Biomarkers; Gastric Cancer; miRNA–28; miRNA–200a; Quantitative Real-time PCR

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. https://doi.org/10.3322/caac.21262 PMid:25651787

Kang G, Hwang WC, Do I-G, Wang K, Kang SY, Lee J et al. Exome sequencing identifies early gastric carcinoma as an early stage of advanced gastric cancer. PLoS One. 2013;8(12):e82770. https://doi.org/10.1371/journal.pone.0082770 PMid:24376576 PMCid:PMC3871845

Hashimoto T, Arai K, Yamashita Y, Iwasaki Y, Hishima T. Characteristics of intramural metastasis in gastric cancer. Gastric Cancer. 2013;16(4):537-42. https://doi.org/10.1007/s10120-012-0228-4 PMid:23314831

He Z, Li B. Recent progress in genetic and epigenetic profile of diffuse gastric cancer. Cancer Transl Med. 2015;1(3):80. https://doi.org/10.4103/2395-3977.159532

Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Shirmohamadi M, Eftekhar-Sadat A-T et al. Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed Pharmacother. 2018;97:286-92. https://doi.org/10.1016/j.biopha.2017.10.129 PMid:29091877

Esquela-Kerscher A, Slack FJ. Oncomirs--microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259. https://doi.org/10.1038/nrc1840 PMid:16557279

Arora A, Singh S, Bhatt AN, Pandey S, Sandhir R, Dwarakanath BS. Interplay between metabolism and oncogenic process: role of microRNAs. Transl Oncogenomics. 2015;7:11. https://doi.org/10.4137/TOG.S29652 PMid:26740741 PMCid:PMC4696840

Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C et al. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol. 2017:1-37.

Zhou K, Liu M, Cao Y. New insight into microRNA functions in cancer: oncogene–microRNA–tumor suppressor gene network. Front Mol Biosci. 2017;4.

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci. 2004;101(9):2999-3004. https://doi.org/10.1073/pnas.0307323101 PMid:14973191 PMCid:PMC365734

Shrestha S, Hsu SD, Huang WY, Huang HY, Chen W, Weng SL et al. A systematic review of microRNA expression profiling studies in human gastric cancer. Cancer Med. 2014;3(4):878-88. https://doi.org/10.1002/cam4.246 PMid:24902858 PMCid:PMC4303155

Almeida MI, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafà R et al. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology. 2012;142(4):886-96. e9.

Xu J, Jiang N, Shi H, Zhao S, Yao S, Shen H. miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol. 2017;50(4):1383-91. https://doi.org/10.3892/ijo.2017.3915 PMid:28350078

Hell MP, Thoma CR, Fankhauser N, Christinat Y, Weber TC, Krek W. miR-28-5p promotes chromosomal instability in VHL-associated cancers by inhibiting Mad2 translation. Cancer Res. 2014;74(9):2432-43. https://doi.org/10.1158/0008-5472.CAN-13-2041 PMid:24491803

Tsouko E, Wang J, Frigo DE, Aydoğdu E, Williams C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis. 2015;36(9):1051-60. https://doi.org/10.1093/carcin/bgv087 PMid:26088362 PMCid:PMC5975720

Chang L, Guo F, Huo B, Lv Y, Wang Y, Liu W. Expression and clinical significance of the microRNA-200 family in gastric cancer. Oncol Lett. 2015;9(5):2317-24. https://doi.org/10.3892/ol.2015.3028 PMid:26137064 PMCid:PMC4467351

Feng X, Wang Z, Fillmore R, Xi Y. MiR-200, a new star miRNA in human cancer. Cancer Lett. 2014;344(2):166-73. https://doi.org/10.1016/j.canlet.2013.11.004 PMid:24262661 PMCid:PMC3946634

Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S et al. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC cancer. 2014;14(1):85. https://doi.org/10.1186/1471-2407-14-85 PMid:24521357 PMCid:PMC3923443

Pichler M, Ress A, Winter E, Stiegelbauer V, Karbiener M, Schwarzenbacher D et al. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer. 2014;110(6):1614-21. https://doi.org/10.1038/bjc.2014.51 PMid:24504363 PMCid:PMC3960623

Network CGAR. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378-84. https://doi.org/10.1038/nature21386 PMid:28112728 PMCid:PMC5354998

Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2011;585(13):2087-99. https://doi.org/10.1016/j.febslet.2010.08.009 PMid:20708002

Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3-4):369. https://doi.org/10.1007/s10555-009-9188-5 PMid:20012925

Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704-14. https://doi.org/10.1038/nrg2634 PMid:19763153 PMCid:PMC3467096

Qin X, Chen J, Wu L, Liu Z. MiR-30b-5p acts as a tumor suppressor, repressing cell proliferation and cell cycle in human hepatocellular carcinoma. Biomed Pharmacother. 2017;89:742-50. https://doi.org/10.1016/j.biopha.2017.02.062 PMid:28273636

Wei S, Ma W. MiR-370 functions as oncogene in melanoma by direct targeting pyruvate dehydrogenase B. Biomed Pharmacother. 2017;90:278-86. https://doi.org/10.1016/j.biopha.2017.03.068 PMid:28364600

Yu X, Ma C, Fu L, Dong J, Ying J. MicroRNA‑139 inhibits the proliferation, migration and invasion of gastric cancer cells by directly targeting ρ‑associated protein kinase 1. Oncol Lett. 2018;15(4):5977-82. https://doi.org/10.3892/ol.2018.8038

Vannini I, Fanini F, Fabbri M. Emerging roles of microRNAs in cancer. Curr Opin Genet Dev. 2018;48:128-33. doi:10.1016/j.gde.2018.01.001. https://doi.org/10.1016/j.gde.2018.01.001

Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 2010;20(3):539-50. https://doi.org/10.1111/j.1750-3639.2009.00328.x PMid:19775293

Yang M, Yao Y, Eades G, Zhang Y, Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat. 2011;129(3):983-91. https://doi.org/10.1007/s10549-011-1604-1 PMid:21638050 PMCid:PMC3752913

Wang C, Wu C, Yang Q, Ding M, Zhong J, Zhang C-Y et al. miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget. 2016;7(45):73888. https://doi.org/10.18632/oncotarget.12516 PMid:27729617 PMCid:PMC5342021

Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y et al. miR‐28‐5p‐IL‐34‐macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology. 2016;63(5):1560-75. https://doi.org/10.1002/hep.28445 PMid:26754294

Sun Q, Zou X, Zhang T, Shen J, Yin Y, Xiang J. The role of miR-200a in vasculogenic mimicry and its clinical significance in ovarian cancer. Gynecol Oncol. 2014;132(3):730-8. https://doi.org/10.1016/j.ygyno.2014.01.047 PMid:24503464

Zuberi M, Mir R, Das J, Ahmad I, Javid J, Yadav P et al. Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features. Clin Transl Oncol. 2015;17(10):779-87. https://doi.org/10.1007/s12094-015-1303-1 PMid:26063644

Refbacks

  • There are currently no refbacks.