Cytotoxic Effects of Coated Gold Nanoparticles on PC12 Cancer Cell
Abstract
Background: The use of gold nanoparticles in medicine and especially in cancer treatment has been of interest to researchers. The effectiveness of this nanoparticle on cells significantly depends on the amount of its entry into the cells. This study was performed to compare the rate and mechanism of effect of gold nanoparticles coated with different amino acid on PC12 cancer cell line.Materials and Methods: The PC12 cells line were exposed to various concentrations of amino acid coated and uncoated gold nanoparticles (0.5, 2.5 and 5 μM). Cell death rate was determined according to level of Lactate dehydrogenase (LDH) release from cells and MTT assay. In addition cell morphology and the amount of Cellular Reactive oxygen species (ROS) were studied.Results: The uncoated gold nanoparticles have shown minor effects on cellular life. Gold nanoparticles coated by tryptophan at high concentrations (2.5, 5 and 25μM) increase in cancer cells metabolic activity. Gold nanoparticles coated by Aspartate also produce the largest amount of LDH and ROS in cancer cells and therefore caused of highest rate of apoptosis.Conclusion: The results showed that the nanoparticles coated with amino acids are affected on cellular metabolism and apoptosis more than uncoated nanoparticles. Also the smallest coated nanoparticles (coated by aspartate) have the most influence and by increasing the size, this effect was reduced. [GMJ.2018;7:e1110]References
Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine. 2014;10(1):19-34.
https://doi.org/10.1016/j.nano.2013.07.001
PMid:23871761
Marzouni HZ, Lavasani Z, Shalilian M, Najibpour R, Fakhr MS, Nazarzadeh R, et al. Women's Awareness and Attitude Toward Breast Self-Examination in Dezful City, Iran, 2013. Iran Red Crescent Med J. 2015;17(1).
Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287-94.
https://doi.org/10.1038/nature10760. PMid:22258607
Hosang M, Shooter EM. Molecular characteristics of nerve growth factor receptors on PC12 cells. J Biol Chem. 1985;260(1):655-62. PMid:2981225
Genchi GG, Ciofani G, Polini A, Liakos I, Iandolo D, Athanassiou A, et al. PC12 neuron‐like cell response to electrospun poly (3‐hydroxybutyrate) substrates. J Tissue Eng Regen Med. 2015;9(2):151-61.
https://doi.org/10.1002/term.1623. PMid:23086861
Fock K. Review article: the epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther. 2014;40(3):250-60. https://doi.org/10.1111/apt.12814
PMid:24912650
Szymanski MS, Porter RA. Preparation and quality control of silver nanoparticle–antibody conjugate for use in electrochemical immunoassays. J Immunol Methods. 2013;387(1):262-9.
https://doi.org/10.1016/j.jim.2012.11.003
PMid:23153725
Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces. 2013;105:342-52.
https://doi.org/10.1016/j.colsurfb.2012.07.036
PMid:23411404
Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39-50.
https://doi.org/10.1038/nrc3180
PMid:22193407
Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine. 2013;9(4):558-69.
https://doi.org/10.1016/j.nano.2012.10.010
PMid:23178284 PMCid:PMC3606274
He L, Lai H, Chen T. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials. 2015;51:30-42.
https://doi.org/10.1016/j.biomaterials.2015.01.063
PMid:25770995
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys med biol. 2004;49(18):N309.
https://doi.org/10.1088/0031-9155/49/18/N03
PMid:15509078
Jia Z, Sun H, Gu Q. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surf A Physicochem Eng Asp. 2013;419:174-9.
https://doi.org/10.1016/j.colsurfa.2012.12.003
Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E. 2010;42(5):1417-24.
https://doi.org/10.1016/j.physe.2009.11.081
Dubey SP, Lahtinen M, Sillanpaa M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry. 2010;45(7):1065-71.
https://doi.org/10.1016/j.procbio.2010.03.024
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719-28. https://doi.org/10.1667/RR1984.1
PMid:20518651
Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531-9.
https://doi.org/10.1016/j.ijrobp.2010.08.044
PMid:21095075 PMCid:PMC3015172
Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, et al. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 2013;5(23):11829-36.
https://doi.org/10.1039/c3nr01351k
PMid:24126539
Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, et al. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep. 2014;4:7034.
https://doi.org/10.1038/srep07034
PMid:25391603 PMCid:PMC5382688
Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine; 2008;3(2):137-40.
https://doi.org/10.2217/17435889.3.2.137
PMid:18373419
Yang J, Wang H, Wang Z, Tan X, Song C, Zhang R, et al. Interaction between antitumor drug and silver nanoparticles: combined fluorscence and surface enhanced Raman scattering study. Chinese Optics Letters. 2009;7(10):894-7.
https://doi.org/10.3788/COL20090710.0894
Logunov S, Ahmadi T, El-Sayed M, Khoury J, Whetten R. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B. 1997;101(19):3713-9.
https://doi.org/10.1021/jp962923f
Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103(21):4212-7.
https://doi.org/10.1021/jp984796o
Inbathamizh L, Ponnu TM, Mary EJ. In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J Pharm Res. 2013;6(1):32-8.
https://doi.org/10.1016/j.jopr.2012.11.010
Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, Mohamad AB. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed. 2013;3(1):58-63.
https://doi.org/10.1016/S2221-1691(13)60024-6
Su WT, Liao YF, Wu TW, Wang BJ, Shih YY. Microgrooved patterns enhanced PC12 cell growth, orientation, neurite elongation, and neuritogenesis. J Biomed Mater Res A. 2013;101(1):185-94.
https://doi.org/10.1002/jbm.a.34318. PMid:22829561
Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem rev. 2004;104(1):293-346.
https://doi.org/10.1021/cr030698+
PMid:14719978
Louis C, Pluchery O. Gold nanoparticles for physics, chemistry and biology: World Scientific; 2012.
https://doi.org/10.1142/p815
Selvakannan P, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya S, et al. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci. 2004;269(1):97-102.
https://doi.org/10.1016/S0021-9797(03)00616-7
Higashi N, Kawahara J, Niwa M. Preparation of helical peptide monolayer-coated gold nanoparticles. J Colloid Interface Sci. 2005;288(1):83-7.
https://doi.org/10.1016/j.jcis.2005.02.086
PMid:15927565
Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006;2006(3).
Jakubowski W, Bartosz G. 2, 7‐DICHLOROFLUORESCIN OXIDATION AND REACTIVE OXYGEN SPECIES: WHAT DOES IT MEASURE? Cell Biol Int. 2000;24(10):757-60.
https://doi.org/10.1006/cbir.2000.0556
PMid:11023655
Shhzamani k, Zare Marzouni H, Tarkhan F, Lashgarian HE. A Study of Mechanism and Rate of PC12 Cancer Cell Destruction Induced by Lysine-Coated Gold Nanoparticle. J Babol Univ Med Sci. 2016;18(8):41-7.
Ravi Shukla VB, Minakshi Chaudhary, Atanu Basu, Ramesh R. Bhonde, Murali Sastry. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir. 2005;21(23):10.
Hui Chen AD, Sonia Saad, Dominic J. Hare, Michael B. Cortie, Stella M. Valenzuela. In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice. PLOS ONE. 2013;8(2):8.
Martin T, Grishanin R. PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol. 2003;71:267-86.
https://doi.org/10.1016/S0091-679X(03)01012-4
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;19(1):17-32.
https://doi.org/10.2147/NSA.S3788
PMCid:PMC3808249
Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3(2):410-20. https://doi.org/10.1039/c0nr00478b
PMid:21229159
Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size‐dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941-9. https://doi.org/10.1002/smll.200700378
PMid:17963284
Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano lett. 2007;7(6):1542-50. https://doi.org/10.1021/nl070363y
PMid:17465586
Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev. 2012;64(2):200-16.
https://doi.org/10.1016/j.addr.2011.08.006
PMid:21925556 PMCid:PMC3258479
Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067-76.
https://doi.org/10.1002/smll.200900466
PMid:19642089
Krysko DV, Berghe TV, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods. 2008;44(3):205-21.
https://doi.org/10.1016/j.ymeth.2007.12.001
PMid:18314051
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907-16.
https://doi.org/10.1128/IAI.73.4.1907-1916.2005
PMid:15784530 PMCid:PMC1087413
Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine. 2007;3(2):111-9.
https://doi.org/10.1016/j.nano.2007.03.005
PMid:17572353
Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Amer Chem Soc. 2010;132(5):1517-9.
https://doi.org/10.1021/ja9102698
PMid:20085324
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325-7.
https://doi.org/10.1002/smll.200400093. PMid:17193451
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?
J Nanopart Res. 2010;12(7):2313-33. https://doi.org/10.1007/s11051-010-9911-8
PMid:21170131 PMCid:PMC2988217
Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41(12):1721-30. https://doi.org/10.1021/ar800035u
PMid:18712884
Aubin-Tam M-E, Hamad-Schifferli K. Gold nanoparticle-cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir. 2005;21(26):12080-4. https://doi.org/10.1021/la052102e
PMid:16342975
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).