Cover Image

Restraining the Proliferation of Acute Lymphoblastic Leukemia Cells by Genistein through Up-regulation of B-cell Translocation Gene-3 at Transcription Level

Masoumeh Abedi Nejad, Mohsen Nikbakht, Masoomeh Afsa, Kianoosh Malekzadeh

Background: Acute lymphoblastic leukemia (ALL) is a highly prevalent pediatric cancer accounting for approximately 78% of leukemia cases in patients younger than 15 years old. Different studies have demonstrated that B-cell translocation gene 3 (BTG3) plays a suppressive role in the progress of different cancers. Genistein is considered a natural and biocompatible compound and a new anti-cancer agent. In this study, we evaluate the effect of genistein on BTG3 expression and proliferation of ALL cancer cells. Materials and Methods: ALL cell lines (MOLT4, MOLT17, and JURKAT) were cultured in standard conditions. Cytotoxicity of genistein was detected using MTT assay. The cells were treated with different concentrations of genistein (10, 25, 40, and 55μM) for 24, 48, and 72 hours, and then cell viability and growth rate were measured. The quantitative real-time polymerase chain reaction was applied to investigate the effect of genistein on BTG3 expression. Results: The percentage of vital cells treated with genistein significantly decreased compared to the non-treated cells, showed an inverse relationship with an increasing genistein concentration. The present study suggests a dose of 40μM for genistein as a potent anticancer effect. Genistein could elevate BTG3 for 1.7 folds in MOLT4 and JURKAT and 2.7 folds in MOLT17 cell lines at transcription level conveged with 60 to 90% reduction in the proliferation rate of cancer cells. Conclusion: Up-regulation of BTG3 as a tumor suppressor gene can be induced by genistein. It seems that BTG3 reactivation can be introduced as another mechanism of anti-proliferative effect of genistein and could be considered as a retardant agent candidate against hematopoietic malignancy.[GMJ.2019;8:e1229]

Acute Lymphoblastic Leukemia; Anti-Proliferation; B-cell Translocation Gene-3; Genistein

Stiller C, Parkin D. Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull. 1996; 52(4): 682-703.

https://doi.org/10.1093/oxfordjournals.bmb.a011577

PMid:9039726

Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. The Lancet. 2013; 381(9881): 1943-1955.

https://doi.org/10.1016/S0140-6736(12)62187-4

Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004; 350(15):1535-48

https://doi.org/10.1056/NEJMra023001

PMid:15071128

Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia. 2008; 22(12):2142-50.

https://doi.org/10.1038/leu.2008.251

PMid:18818707 PMCid:PMC2872117

Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015; 125(26):3977-87.

https://doi.org/10.1182/blood-2015-02-580043

PMid:25999453 PMCid:PMC4481590

Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012; 122(10): 3398-3406.

https://doi.org/10.1172/JCI61269

PMid:23023710 PMCid:PMC3461904

Jones PA, Laird PW. Cancer-epigenetics comes of age. Nat Genet. 1999; 21(2):163-7.

https://doi.org/10.1038/5947

PMid:9988266

Cortes U, Moyret-Lalle C, Falette N, Duriez C, Ghissassi FE, Barnas C, et al. BTG gene expression in the p53‐dependent and‐independent cellular response to DNA damage. Mol Carcinog. 2000; 27(2):57-64.

https://doi.org/10.1002/(SICI)1098-2744(200002)27:2<57::AID-MC1>3.0.CO;2-I

Cheng YC, Lin TY, Shieh SY. Candidate tumor suppressor BTG3 maintains genomic stability by promoting Lys63-linked ubiquitination and activation of the checkpoint kinase CHK1. Proc Natl Acad Sci U S A. 2013; 110(15):5993-98.

https://doi.org/10.1073/pnas.1220635110

PMid:23533280 PMCid:PMC3625301

Ou Y-H, Chung P-H, Sun T-P, Shieh S-Y. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J. 2007; 26(17):3968-80.

https://doi.org/10.1038/sj.emboj.7601825

PMid:17690688 PMCid:PMC1994125

Majid S, Altaf AD, Ardalan EA, Hiroshi H, Kazumori K, Varahram S, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009; 30(4):662-70.

https://doi.org/10.1093/carcin/bgp042

PMid:19221000 PMCid:PMC2664457

Yoneda M, Suzuki T, Nakamura T, Ajima R, Yoshida Y, Kakuta S, et al. Deficiency of antiproliferative family protein Ana correlates with development of lung adenocarcinoma. Cancer Sci. 2009; 100(2):225-232.

https://doi.org/10.1111/j.1349-7006.2008.01030.x

PMid:19068083

Yamamoto N, Uzawa K, Miya T, Watanabe T, Yokoe H, Shibahara T, et al. Analysis of the ANA gene as a candidate for the chromosome 21q oral cancer susceptibility locus. Br J Cancer. 2001; 84(6):754-62.

https://doi.org/10.1054/bjoc.2000.1656

PMid:11259088 PMCid:PMC2363813

Lin T, Cheng YC, Yang HC, Lin WC, Wang CC, Lai PL, et al. Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16INK4a signaling axis. Oncogene. 2012; 31(27):3287-97.

https://doi.org/10.1038/onc.2011.491

PMid:22020331

Chen X, Chen G, Cao X, Zhou Y, Yang T, Wei S. et al., Downregulation of BTG3 in non-small cell lung cancer. Biochem Biophys Res Commun. 2013; 437(1):173-8.

https://doi.org/10.1016/j.bbrc.2013.06.062

PMid:23810394

Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B‐Cell translocation gene 3 in prostate cancer. Cancer. 2010; 116(1):66-76.

https://doi.org/10.1002/cncr.24662

PMid:19885928 PMCid:PMC3954042

Deng B, Zhao Y, Gou W, Chen S, Mao X, Takano Y, Zheng H. Decreased expression of BTG3 was linked to carcinogenesis, aggressiveness, and prognosis of ovarian carcinoma. Tumour Biol. 2013; 34(5):2617-24.

https://doi.org/10.1007/s13277-013-0811-2

PMid:23657964 PMCid:PMC3785705

Lv Z, Zou H, Peng K, Wang J, Ding Y, Li Y, et al., The suppressive role and aberrent promoter methylation of BTG3 in the progression of hepatocellular carcinoma. PloS one. 2013; 8(10):77473.

https://doi.org/10.1371/journal.pone.0077473

PMid:24147003 PMCid:PMC3798399

Yu J, Zhang Y, Qi Z, Kurtycz D, Vacano G. Methylation-mediated downregulation of the B-cell translocation gene 3 (BTG3) in breast cancer cells. Gene Expr. 2007; 14(3):173-182.

Putnik M, Zhao C, Gustafsson JÅ, Dahlman-Wright K. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun. 2012; 426(1):26-32.

https://doi.org/10.1016/j.bbrc.2012.08.007

PMid:22902638

Chen WF, Huang MH, Tzang CH, Yang M, Wong MS. Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim Biophys Acta Mol Basis Dis. 2003; 1638(2):187-96.

https://doi.org/10.1016/S0925-4439(03)00082-6

Peterson G, Barnes S. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ. 1996; 7(10):1345-51.

Pagliacci M, Smacchia M, Migliorati G, Grignani F, Riccardi C, Nicoletti I. Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur J Cancer. 1994; 30(11):1675-82.

https://doi.org/10.1016/0959-8049(94)00262-4

Nikbakht M, Jha A.K, Malekzadeh3 K, Askari M, Mohammadi S, Marwaha R.K, Kaul D, Kaur J.Aberrant promoter hypermethylation of selected apoptotic genes in childhood acute lymphoblastic leukemia among north indian population. Exp Oncol. 2017; 39(1):57-64

https://doi.org/10.31768/2312-8852.2017.39(1):57-64

Xiaoxia Liu X, Lianhua Y, Jingxin D, Hongyan J, Youji F. Genistein inhibits placental choriocarcinoma cell line JAR invasion through ERβ/MTA3/Snail/E-cadherin pathway. Oncol Lett. 2011; 2(5): 891-897.

Yong W, He W, Wei Z, Chen S, Chen S, Peng X, et al. Genistein sensitizes bladder cancer cells to hcpt treatment in vitro and in vivo via atm/nf-kb/ikk pathway-induced apoptosis. PLOS ONE. 2013; 8(1): e50175.

https://doi.org/10.1371/journal.pone.0050175

PMid:23365634 PMCid:PMC3554754

Yu D, Shin HS, Lee YS, Lee D, Kim S, Lee YC. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncol Rep. 2014, 31(2):673-8.

https://doi.org/10.3892/or.2013.2893

PMid:24297371

Zhang S, Wang Y, Chen Z, Kim S, Iqbal S, Chi A. Genistein enhances the efficacy of cabazitaxel chemotherapy in metastatic castration-resistant prostate cancer cells. Prostate. 2013,73(15):1681-9.

https://doi.org/10.1002/pros.22705

PMid:23999913 PMCid:PMC4499861

Raghu Nadhanan R, Skinner J, Chung R, Su YW, Howe PR, Xian CJ. Supplementation with fish oil and genistein, individually or in combination, protects bone against the adverse effects of methotrexate chemotherapy in rats. PloS on. 2013, 8(8):e71592.

https://doi.org/10.1371/journal.pone.0071592

PMid:23951199 PMCid:PMC3741109

Huang W, Wan C, Luo Q, Huang Z. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci. 2014,15(3):3432-43.

https://doi.org/10.3390/ijms15033432

PMid:24573253 PMCid:PMC3975346

Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X. Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics. 2012, 12(14):2391-9.

https://doi.org/10.1002/pmic.201100652

PMid:22887948

Liu YL, Zhang GQ, Yang Y, Zhang CY, Fu RX, Yang YM, et al. Genistein induces G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutr Cancer. 2013, 65(7):1034-41.

https://doi.org/10.1080/01635581.2013.810290

PMid:24053672

Ko KP, Park SK, Park B, Yang JJ, Cho LY, Kang C. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidemiol Biomarkers Prev. 2010, 19(5):1292-300.

https://doi.org/10.1158/1055-9965.EPI-09-1004

PMid:20447921

Carlo-Stella C1, Regazzi E, Garau D, Mangoni L, Rizzo MT, Bonati A, et al. Effect of the protein tyrosine kinase inhibitor genistein on normal and leukaemic haemopoietic progenitor cells. Br J Haematol. 1996, 93(3):551-7.

https://doi.org/10.1046/j.1365-2141.1996.d01-1694.x

PMid:8652372

Li Y, Upadhyay S, Bhuiyan M, Sarkar FH. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene. 1999, 18(20): 3166 - 72.

https://doi.org/10.1038/sj.onc.1202650

PMid:10340389

Zhang LL, Li L, Wu DP, Fan JH, Li X, Wu KJ, et al. A novel anti-cancer effect of genistein: reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacol Sin. 2008; 29(9): 1060-8.

https://doi.org/10.1111/j.1745-7254.2008.00831.x

PMid:18718175

Howard L, Parnes MD, William D, Pharm D. Chemoprevention in Prostate Cancer. Pharmacotherapy. 2006; 57: 1533.

https://doi.org/10.1592/phco.26.10.1533

PMid:16999665

Severson RK, Nomura AM, Grove JS, Stemmermann GN. A Prospective Study of Demographics, Diet, and Prostate Cancer among Men of Japanese Ancestry in Hawaii. Cancer Res. 1989; 49(7): 1857-60.

Maria R, Carmela S, Idolo T, Gian Luigi R. Phytochemicals in Cancer Prevention and Therapy: Truth or Dare?. Toxins. 2010; 2(4): 517-51.

https://doi.org/10.3390/toxins2040517

PMid:22069598 PMCid:PMC3153217

Carmela S, Gian Luigi R, Ilkay Erdogan O, Solomon H, Maria D, Antoni S, et al. Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv Nutr. 2015; 6(4): 408-19.

https://doi.org/10.3945/an.114.008052

PMid:26178025 PMCid:PMC4496735

Russo M, Gian Luigi A, Daglia M, DeviKasi P, Ravi S, Nabavi SF, et al. Understanding genistein in cancer: The ''good" and the ''bad" effects: A review. Food Chem. 2016; 196: 589-600.

https://doi.org/10.1016/j.foodchem.2015.09.085

PMid:26593532

Henrique B, Eduardo P, Eduardo L, Nathalia C, Rodrigo A, Carina C, et al. Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer. 2013; 2013: 23.

https://doi.org/10.1155/2013/920612

PMid:23738079 PMCid:PMC3657461

Weiqi D, Lei H, Chunlei L, Shumei W, Ping C, Yan Z, et al. Genistein Inhibits Hepatocellular Carcinoma Cell Migration by Reversing the Epithelial-Mesenchymal Transition: Partial Mediation by the Transcription Factor NFAT1. Mol Carcinog. 2013; 54(4): 301-311.

https://doi.org/10.1002/mc.22100

PMid:24243709

Setchell K, Borriello SP, Hulme P, Kirk DN, Axelson M., Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr. 1984; 40(3):569-78.

https://doi.org/10.1093/ajcn/40.3.569

PMid:6383008

Barnes S, Grubbs C, Setchell KD, Carlson J. Soybeans inhibit mammary tumors in models of breast cancer. Prog Clin Biol Res. 1990. 347: 239.

Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest. 1990; 50(sup201):3-23.

https://doi.org/10.1080/00365519009085798

Fritz WA, Coward L, Wang J, Lamartiniere CA. Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis. 1998; 19(12):2151-8.

https://doi.org/10.1093/carcin/19.12.2151

PMid:9886571

Peterson G, Barnes S., Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 1993; 22(4):335-5.

https://doi.org/10.1002/pros.2990220408

PMid:8497428

Constantinou A, Kiguchi K, Huberman E. Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res. 1990; 50(9):2618-24.

Lamartiniere CA. Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr. 2000; 71(6):1705-7.

https://doi.org/10.1093/ajcn/71.6.1705S

PMid:10837323

Xia J, Duan Q, Ahmad A, Bao B, Banerjee S, Shi Y, et al. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr Drug Targets. 2012; 13(14):1750-6.

https://doi.org/10.2174/138945012804545597

PMid:23140286

UniProtKB - Q14201 (BTG3_HUMAN). 2016; Available from: http://www.uniprot.org/uniprot/Q14201.

Qiagen Gene Globe. Cell Cycle Control by BTG Proteins. 2018; Available from: https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=96

Gou Wf, Ang XF, Shen DF, Zhao S, Liu YP, Sun HZ,et al.,The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy. Oncotarget. 2015; 6(23):19841.

https://doi.org/10.18632/oncotarget.3734

Refbacks

  • There are currently no refbacks.