Restraining the Proliferation of Acute Lymphoblastic Leukemia Cells by Genistein through Up-regulation of B-cell Translocation Gene-3 at Transcription Level
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a highly prevalent pediatric cancer accounting for approximately 78% of leukemia cases in patients younger than 15 years old. Different studies have demonstrated that B-cell translocation gene 3 (BTG3) plays a suppressive role in the progress of different cancers. Genistein is considered a natural and biocompatible compound and a new anti-cancer agent. In this study, we evaluate the effect of genistein on BTG3 expression and proliferation of ALL cancer cells. Materials and Methods: ALL cell lines (MOLT4, MOLT17, and JURKAT) were cultured in standard conditions. Cytotoxicity of genistein was detected using MTT assay. The cells were treated with different concentrations of genistein (10, 25, 40, and 55μM) for 24, 48, and 72 hours, and then cell viability and growth rate were measured. The quantitative real-time polymerase chain reaction was applied to investigate the effect of genistein on BTG3 expression. Results: The percentage of vital cells treated with genistein significantly decreased compared to the non-treated cells, showed an inverse relationship with an increasing genistein concentration. The present study suggests a dose of 40μM for genistein as a potent anticancer effect. Genistein could elevate BTG3 for 1.7 folds in MOLT4 and JURKAT and 2.7 folds in MOLT17 cell lines at transcription level conveged with 60 to 90% reduction in the proliferation rate of cancer cells. Conclusion: Up-regulation of BTG3 as a tumor suppressor gene can be induced by genistein. It seems that BTG3 reactivation can be introduced as another mechanism of anti-proliferative effect of genistein and could be considered as a retardant agent candidate against hematopoietic malignancy.[GMJ.2019;8:e1229]References
Stiller C, Parkin D. Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull. 1996; 52(4): 682-703.
https://doi.org/10.1093/oxfordjournals.bmb.a011577
PMid:9039726
Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. The Lancet. 2013; 381(9881): 1943-1955.
https://doi.org/10.1016/S0140-6736(12)62187-4
Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004; 350(15):1535-48
https://doi.org/10.1056/NEJMra023001
PMid:15071128
Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia. 2008; 22(12):2142-50.
https://doi.org/10.1038/leu.2008.251
PMid:18818707 PMCid:PMC2872117
Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015; 125(26):3977-87.
https://doi.org/10.1182/blood-2015-02-580043
PMid:25999453 PMCid:PMC4481590
Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012; 122(10): 3398-3406.
https://doi.org/10.1172/JCI61269
PMid:23023710 PMCid:PMC3461904
Jones PA, Laird PW. Cancer-epigenetics comes of age. Nat Genet. 1999; 21(2):163-7.
https://doi.org/10.1038/5947
PMid:9988266
Cortes U, Moyret-Lalle C, Falette N, Duriez C, Ghissassi FE, Barnas C, et al. BTG gene expression in the p53‐dependent and‐independent cellular response to DNA damage. Mol Carcinog. 2000; 27(2):57-64.
https://doi.org/10.1002/(SICI)1098-2744(200002)27:2<57::AID-MC1>3.0.CO;2-I
Cheng YC, Lin TY, Shieh SY. Candidate tumor suppressor BTG3 maintains genomic stability by promoting Lys63-linked ubiquitination and activation of the checkpoint kinase CHK1. Proc Natl Acad Sci U S A. 2013; 110(15):5993-98.
https://doi.org/10.1073/pnas.1220635110
PMid:23533280 PMCid:PMC3625301
Ou Y-H, Chung P-H, Sun T-P, Shieh S-Y. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J. 2007; 26(17):3968-80.
https://doi.org/10.1038/sj.emboj.7601825
PMid:17690688 PMCid:PMC1994125
Majid S, Altaf AD, Ardalan EA, Hiroshi H, Kazumori K, Varahram S, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009; 30(4):662-70.
https://doi.org/10.1093/carcin/bgp042
PMid:19221000 PMCid:PMC2664457
Yoneda M, Suzuki T, Nakamura T, Ajima R, Yoshida Y, Kakuta S, et al. Deficiency of antiproliferative family protein Ana correlates with development of lung adenocarcinoma. Cancer Sci. 2009; 100(2):225-232.
https://doi.org/10.1111/j.1349-7006.2008.01030.x
PMid:19068083
Yamamoto N, Uzawa K, Miya T, Watanabe T, Yokoe H, Shibahara T, et al. Analysis of the ANA gene as a candidate for the chromosome 21q oral cancer susceptibility locus. Br J Cancer. 2001; 84(6):754-62.
https://doi.org/10.1054/bjoc.2000.1656
PMid:11259088 PMCid:PMC2363813
Lin T, Cheng YC, Yang HC, Lin WC, Wang CC, Lai PL, et al. Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16INK4a signaling axis. Oncogene. 2012; 31(27):3287-97.
https://doi.org/10.1038/onc.2011.491
PMid:22020331
Chen X, Chen G, Cao X, Zhou Y, Yang T, Wei S. et al., Downregulation of BTG3 in non-small cell lung cancer. Biochem Biophys Res Commun. 2013; 437(1):173-8.
https://doi.org/10.1016/j.bbrc.2013.06.062
PMid:23810394
Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B‐Cell translocation gene 3 in prostate cancer. Cancer. 2010; 116(1):66-76.
https://doi.org/10.1002/cncr.24662
PMid:19885928 PMCid:PMC3954042
Deng B, Zhao Y, Gou W, Chen S, Mao X, Takano Y, Zheng H. Decreased expression of BTG3 was linked to carcinogenesis, aggressiveness, and prognosis of ovarian carcinoma. Tumour Biol. 2013; 34(5):2617-24.
https://doi.org/10.1007/s13277-013-0811-2
PMid:23657964 PMCid:PMC3785705
Lv Z, Zou H, Peng K, Wang J, Ding Y, Li Y, et al., The suppressive role and aberrent promoter methylation of BTG3 in the progression of hepatocellular carcinoma. PloS one. 2013; 8(10):77473.
https://doi.org/10.1371/journal.pone.0077473
PMid:24147003 PMCid:PMC3798399
Yu J, Zhang Y, Qi Z, Kurtycz D, Vacano G. Methylation-mediated downregulation of the B-cell translocation gene 3 (BTG3) in breast cancer cells. Gene Expr. 2007; 14(3):173-182.
Putnik M, Zhao C, Gustafsson JÅ, Dahlman-Wright K. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun. 2012; 426(1):26-32.
https://doi.org/10.1016/j.bbrc.2012.08.007
PMid:22902638
Chen WF, Huang MH, Tzang CH, Yang M, Wong MS. Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim Biophys Acta Mol Basis Dis. 2003; 1638(2):187-96.
https://doi.org/10.1016/S0925-4439(03)00082-6
Peterson G, Barnes S. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ. 1996; 7(10):1345-51.
Pagliacci M, Smacchia M, Migliorati G, Grignani F, Riccardi C, Nicoletti I. Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur J Cancer. 1994; 30(11):1675-82.
https://doi.org/10.1016/0959-8049(94)00262-4
Nikbakht M, Jha A.K, Malekzadeh3 K, Askari M, Mohammadi S, Marwaha R.K, Kaul D, Kaur J.Aberrant promoter hypermethylation of selected apoptotic genes in childhood acute lymphoblastic leukemia among north indian population. Exp Oncol. 2017; 39(1):57-64
https://doi.org/10.31768/2312-8852.2017.39(1):57-64
Xiaoxia Liu X, Lianhua Y, Jingxin D, Hongyan J, Youji F. Genistein inhibits placental choriocarcinoma cell line JAR invasion through ERβ/MTA3/Snail/E-cadherin pathway. Oncol Lett. 2011; 2(5): 891-897.
Yong W, He W, Wei Z, Chen S, Chen S, Peng X, et al. Genistein sensitizes bladder cancer cells to hcpt treatment in vitro and in vivo via atm/nf-kb/ikk pathway-induced apoptosis. PLOS ONE. 2013; 8(1): e50175.
https://doi.org/10.1371/journal.pone.0050175
PMid:23365634 PMCid:PMC3554754
Yu D, Shin HS, Lee YS, Lee D, Kim S, Lee YC. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncol Rep. 2014, 31(2):673-8.
https://doi.org/10.3892/or.2013.2893
PMid:24297371
Zhang S, Wang Y, Chen Z, Kim S, Iqbal S, Chi A. Genistein enhances the efficacy of cabazitaxel chemotherapy in metastatic castration-resistant prostate cancer cells. Prostate. 2013,73(15):1681-9.
https://doi.org/10.1002/pros.22705
PMid:23999913 PMCid:PMC4499861
Raghu Nadhanan R, Skinner J, Chung R, Su YW, Howe PR, Xian CJ. Supplementation with fish oil and genistein, individually or in combination, protects bone against the adverse effects of methotrexate chemotherapy in rats. PloS on. 2013, 8(8):e71592.
https://doi.org/10.1371/journal.pone.0071592
PMid:23951199 PMCid:PMC3741109
Huang W, Wan C, Luo Q, Huang Z. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci. 2014,15(3):3432-43.
https://doi.org/10.3390/ijms15033432
PMid:24573253 PMCid:PMC3975346
Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X. Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics. 2012, 12(14):2391-9.
https://doi.org/10.1002/pmic.201100652
PMid:22887948
Liu YL, Zhang GQ, Yang Y, Zhang CY, Fu RX, Yang YM, et al. Genistein induces G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutr Cancer. 2013, 65(7):1034-41.
https://doi.org/10.1080/01635581.2013.810290
PMid:24053672
Ko KP, Park SK, Park B, Yang JJ, Cho LY, Kang C. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidemiol Biomarkers Prev. 2010, 19(5):1292-300.
https://doi.org/10.1158/1055-9965.EPI-09-1004
PMid:20447921
Carlo-Stella C1, Regazzi E, Garau D, Mangoni L, Rizzo MT, Bonati A, et al. Effect of the protein tyrosine kinase inhibitor genistein on normal and leukaemic haemopoietic progenitor cells. Br J Haematol. 1996, 93(3):551-7.
https://doi.org/10.1046/j.1365-2141.1996.d01-1694.x
PMid:8652372
Li Y, Upadhyay S, Bhuiyan M, Sarkar FH. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene. 1999, 18(20): 3166 - 72.
https://doi.org/10.1038/sj.onc.1202650
PMid:10340389
Zhang LL, Li L, Wu DP, Fan JH, Li X, Wu KJ, et al. A novel anti-cancer effect of genistein: reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacol Sin. 2008; 29(9): 1060-8.
https://doi.org/10.1111/j.1745-7254.2008.00831.x
PMid:18718175
Howard L, Parnes MD, William D, Pharm D. Chemoprevention in Prostate Cancer. Pharmacotherapy. 2006; 57: 1533.
https://doi.org/10.1592/phco.26.10.1533
PMid:16999665
Severson RK, Nomura AM, Grove JS, Stemmermann GN. A Prospective Study of Demographics, Diet, and Prostate Cancer among Men of Japanese Ancestry in Hawaii. Cancer Res. 1989; 49(7): 1857-60.
Maria R, Carmela S, Idolo T, Gian Luigi R. Phytochemicals in Cancer Prevention and Therapy: Truth or Dare?. Toxins. 2010; 2(4): 517-51.
https://doi.org/10.3390/toxins2040517
PMid:22069598 PMCid:PMC3153217
Carmela S, Gian Luigi R, Ilkay Erdogan O, Solomon H, Maria D, Antoni S, et al. Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv Nutr. 2015; 6(4): 408-19.
https://doi.org/10.3945/an.114.008052
PMid:26178025 PMCid:PMC4496735
Russo M, Gian Luigi A, Daglia M, DeviKasi P, Ravi S, Nabavi SF, et al. Understanding genistein in cancer: The ''good" and the ''bad" effects: A review. Food Chem. 2016; 196: 589-600.
https://doi.org/10.1016/j.foodchem.2015.09.085
PMid:26593532
Henrique B, Eduardo P, Eduardo L, Nathalia C, Rodrigo A, Carina C, et al. Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer. 2013; 2013: 23.
https://doi.org/10.1155/2013/920612
PMid:23738079 PMCid:PMC3657461
Weiqi D, Lei H, Chunlei L, Shumei W, Ping C, Yan Z, et al. Genistein Inhibits Hepatocellular Carcinoma Cell Migration by Reversing the Epithelial-Mesenchymal Transition: Partial Mediation by the Transcription Factor NFAT1. Mol Carcinog. 2013; 54(4): 301-311.
https://doi.org/10.1002/mc.22100
PMid:24243709
Setchell K, Borriello SP, Hulme P, Kirk DN, Axelson M., Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr. 1984; 40(3):569-78.
https://doi.org/10.1093/ajcn/40.3.569
PMid:6383008
Barnes S, Grubbs C, Setchell KD, Carlson J. Soybeans inhibit mammary tumors in models of breast cancer. Prog Clin Biol Res. 1990. 347: 239.
Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest. 1990; 50(sup201):3-23.
https://doi.org/10.1080/00365519009085798
Fritz WA, Coward L, Wang J, Lamartiniere CA. Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis. 1998; 19(12):2151-8.
https://doi.org/10.1093/carcin/19.12.2151
PMid:9886571
Peterson G, Barnes S., Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 1993; 22(4):335-5.
https://doi.org/10.1002/pros.2990220408
PMid:8497428
Constantinou A, Kiguchi K, Huberman E. Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res. 1990; 50(9):2618-24.
Lamartiniere CA. Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr. 2000; 71(6):1705-7.
https://doi.org/10.1093/ajcn/71.6.1705S
PMid:10837323
Xia J, Duan Q, Ahmad A, Bao B, Banerjee S, Shi Y, et al. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr Drug Targets. 2012; 13(14):1750-6.
https://doi.org/10.2174/138945012804545597
PMid:23140286
UniProtKB - Q14201 (BTG3_HUMAN). 2016; Available from: http://www.uniprot.org/uniprot/Q14201.
Qiagen Gene Globe. Cell Cycle Control by BTG Proteins. 2018; Available from: https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=96
Gou Wf, Ang XF, Shen DF, Zhao S, Liu YP, Sun HZ,et al.,The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy. Oncotarget. 2015; 6(23):19841.
https://doi.org/10.18632/oncotarget.3734
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).