Cover Image

A Short Review on the Relationships Between Nephrolithiasis and Myocardial Infarction

Hormoz Karami, Hadi Maleki, Maryam Baghbeheshti, Mostafa Hashemi, Mehrdad Rouzbeh, Mohammad Afkhami Ardakani

The interaction between organs is a crucial part of modern medicine. As a very prerequisite to manage a disease, practitioners should have a full awareness of the related organs. Kidney and heart are two vital organs that are closely interconnected in various fields. These two organs have a lot of common risk factors for making a person unhealthy; therefore, if you prevent the disease in one of them, the other’s morbidity might be alleviated as well. Among them, nephrolithiasis and myocardial infarction (MI) have more risk factors in common, and both could be fatal. Also, these two diseases are important regarding the prevalence, incidence, and burden of disease. Some studies confirm the relationship between MI and nephrolithiasis; however, further researches are needed to discover the exact direction of their relationship. The present review aims to explain the mechanism of MI and nephrolithiasis; clarify the relationship between these two disease based on physiological, pathological, and clinical studies; and propose some solutions for the prevention and treatment of such diseases. [GMJ.2019;8:e1289]

Nephrolithiasis; Myocardial Infarction; Kidney Stone; Cardiovascular

Romero V, Akpinar H, Assimos DG. Kidney Stones: A Global Picture of Prevalence, Incidence, and Associated Risk Factors. Rev Urol. 2010;12(2-3):e86-e96.

Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256.

https://doi.org/10.21037/atm.2016.06.33

PMid:27500157 PMCid:PMC4958723

Mohseni J, Kazemi T, Maleki MH, Beydokhti H. A Systematic Review on the Prevalence of Acute Myocardial Infarction in Iran. Heart Views. 2017;18(4):125-32.

https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_71_17

PMid:29326775 PMCid:PMC5755193

Baghbeheshti M, Zolfaghari M, Rückerl R. Fine Particulate Matter (PM2. 5) and Health Effects: An Unbridle Problem in Iran. Galen. 2017;6(2):81-94.

Lauderdale DS, Thisted RA, Wen M, Favus MJ. Bone mineral density and fracture among prevalent kidney stone cases in the Third National Health and Nutrition Examination Survey. J Bone Miner Res. 2001;16(10):1893-8.

https://doi.org/10.1359/jbmr.2001.16.10.1893

PMid:11585355

Cappuccio FP, Kalaitzidis R, Duneclift S, Eastwood JB. Unravelling the links between calcium excretion, salt intake, hypertension, kidney stones and bone metabolism. J Nephrol. 2000;13(3):169-77.

Taylor EN, Feskanich D, Paik JM, Curhan GC. Nephrolithiasis and risk of incident bone fracture. J Urol. 2016;195(5):1482-6.

https://doi.org/10.1016/j.juro.2015.12.069

PMid:26707509 PMCid:PMC4870104

Prochaska M, Taylor E, Vaidya A, Curhan G. Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones. Clin J Am Soc Nephrol. 2017:CJN. 01420217.

https://doi.org/10.2215/CJN.01420217

PMid:28576907 PMCid:PMC5544505

Sakhaee K, Maalouf NM, Sinnott B. Kidney Stones 2012: Pathogenesis, Diagnosis, and Management. J Clin Endocrinol Metab. 2012;97(6):1847-60.

https://doi.org/10.1210/jc.2011-3492

PMid:22466339 PMCid:PMC3387413

Fagagnini S, Heinrich H, Rossel J-B, Biedermann L, Frei P, Zeitz J, et al. Risk factors for gallstones and kidney stones in a cohort of patients with inflammatory bowel diseases. PLoS One. 2017;12(10):e0185193.

https://doi.org/10.1371/journal.pone.0185193

PMid:29023532 PMCid:PMC5638235

Nazzal L, Puri S, Goldfarb DS. Enteric hyperoxaluria: an important cause of end-stage kidney disease. Nephrol Dial Transplant. 2016;31(3):375-82.

https://doi.org/10.1093/ndt/gfv005

PMid:25701816 PMCid:PMC5790159

Clayman RV, Williams RD. Oxalate Urolithiasis Following Jejunoileal Bypass: Mechanism and Management. Surg Clin North Am. 1979;59(6):1071-7.

https://doi.org/10.1016/S0039-6109(16)41985-7

Khan AA, Hanley DA, Rizzoli R, Bollerslev J, Young JEM, Rejnmark L, et al. Primary hyperparathyroidism: review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos Int. 2017;28(1):1-19.

https://doi.org/10.1007/s00198-016-3716-2

PMid:27613721 PMCid:PMC5206263

Mollerup CL, Vestergaard P, Frokjaer VG, Mosekilde L, Christiansen P, Blichert-Toft M. Risk of renal stone events in primary hyperparathyroidism before and after parathyroid surgery: controlled retrospective follow up study. BMJ. 2002;325(7368):807.

https://doi.org/10.1136/bmj.325.7368.807

PMid:12376441 PMCid:PMC128947

Peng JP, Zheng H. Kidney stones may increase the risk of coronary heart disease and stroke: A PRISMA-Compliant meta-analysis. Medicine. 2017;96(34):e7898.

https://doi.org/10.1097/MD.0000000000007898

PMid:28834909 PMCid:PMC5572031

Selberherr A, Hörmann M, Prager G, Riss P, Scheuba C, Niederle B. "Silent" kidney stones in "asymptomatic" primary hyperparathyroidism-a comparison of multidetector computed tomography and ultrasound. Langenbeck's Arch Surg. 2017;402(2):289-93.

https://doi.org/10.1007/s00423-016-1520-2

PMid:27734157 PMCid:PMC5346427

Sreelesh KP, Sreejith GN, Pranab KP. Kidney Stones and Crushed Bones Secondary to Hyperparathyroidism. Proc (Bayl Univ Med Cent). 2016;29(1):44-5.

https://doi.org/10.1080/08998280.2016.11929354

Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL. Macronutrients and insulin resistance in cholesterol gallstone disease. Ame J Gastroenterol. 2008;103(11):2932-9.

https://doi.org/10.1111/j.1572-0241.2008.02189.x

PMid:18853969

Chandran P, Kuchhal NK, Garg P, Pundir CS. An extended chemical analysis of gallstone. Indian J Clin Biochem . 2007;22(2):145-50.

https://doi.org/10.1007/BF02913334

PMid:23105703 PMCid:PMC3453815

Taylor EN, Chan AT, Giovannucci EL, Curhan GC. Cholelithiasis and the risk of nephrolithiasis. J Urol. 2011;186(5):1882-7.

https://doi.org/10.1016/j.juro.2011.06.067

PMid:21944091 PMCid:PMC3338332

Ahmed MH, Barakat S, Almobarak AO. The association between renal stone disease and cholesterol gallstones: the easy to believe and not hard to retrieve theory of the metabolic syndrome. Ren Fail. 2014;36(6):957-62.

https://doi.org/10.3109/0886022X.2014.900424

PMid:24678942

Bollerslev J, Pretorius M, Heck A. Parathyroid Hormone Independent Hypercalcemia in Adults. Best Pract Res Clin Endocrinol Metab . 2018 Sep; 13: 9-13.

Beebeejaun M, Chinnasamy E, Wilson P, Sharma A, Beharry N, Bano G. Papillary carcinoma of the thyroid in patients with primary hyperparathyroidism: Is there a link? Med Hypotheses. 2017;103:100-4.

https://doi.org/10.1016/j.mehy.2017.04.016

PMid:28571792

Said S, Hernandez GT. The link between chronic kidney disease and cardiovascular disease. J Nephropath. 2014;3(3):99-104.

Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE. Mechanisms of human kidney stone formation. Urolithiasis. 2015;43(0 1):19-32.

https://doi.org/10.1007/s00240-014-0701-0

PMid:25108546 PMCid:PMC4285570

Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators. Biomed Res Int. 2013;2013:292953.

https://doi.org/10.1155/2013/292953

PMid:24151593 PMCid:PMC3787572

Wilkinson H. Clinical investigation and management of patients with renal stones. Ann Clin Biochem. 2001;38(Pt 3):180-7.

https://doi.org/10.1258/0004563011900623

PMid:11392494

López M, Hoppe B. History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol. 2010;25(1):49-59.

https://doi.org/10.1007/s00467-008-0960-5

PMid:21476230 PMCid:PMC2778769

Bihl G, Meyers A. Recurrent renal stone disease—advances in pathogenesis and clinical management. The Lancet. 2001;358(9282):651-6.

https://doi.org/10.1016/S0140-6736(01)05782-8

Devarajan A. Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. Clinical science (London, England : 1979). 2018;132(6):615-26.

https://doi.org/10.1042/CS20171574

PMid:29559506

Ratkalkar VN, Kleinman JG. Mechanisms of Stone Formation. Clin Rev Bone Miner Metab . 2011;9(3-4):187-97.

https://doi.org/10.1007/s12018-011-9104-8

PMid:22229020 PMCid:PMC3252394

Cook AF, Grover PK, Ryall RL. Face-specific binding of prothrombin fragment 1 and human serum albumin to inorganic and urinary calcium oxalate monohydrate crystals. BJU int. 2009;103(6):826-35.

https://doi.org/10.1111/j.1464-410X.2008.08195.x

PMid:19021614 PMCid:PMC2771741

Basavaraj DR, Biyani CS, Browning AJ, Cartledge JJ. The Role of Urinary Kidney Stone Inhibitors and Promoters in the Pathogenesis of Calcium Containing Renal Stones. EAU-EBU Update Series. 2007;5(3):126-36.

https://doi.org/10.1016/j.eeus.2007.03.002

Bhasin B, Urekli HM, Atta MG. Primary and secondary hyperoxaluria: Understanding the enigma. World J Nephrol. 2015;4(2):235-44.

https://doi.org/10.5527/wjn.v4.i2.235

PMid:25949937 PMCid:PMC4419133

Baumann JM, Affolter B. From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World J Nephrol. 2014;3(4):256-67.

https://doi.org/10.5527/wjn.v3.i4.256

PMid:25374820 PMCid:PMC4220359

Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney int. 2004;66(3):1159-66.

https://doi.org/10.1111/j.1523-1755.2004.00867.x

PMid:15327412

Evan AP. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol. 2010;25(5):831-41.

https://doi.org/10.1007/s00467-009-1116-y

PMid:19198886 PMCid:PMC2839518

King JS, Boyce WH. Immunological studies on serum and urinary proteins in urolith matrix in man. Ann N Y Acad Sci. 1963;104(1):579-91.

https://doi.org/10.1111/j.1749-6632.1963.tb17694.x

Ramaswamy K, Killilea DW, Kapahi P, Kahn AJ, Chi T, Stoller ML. The elementome of calcium-based urinary stones and its role in urolithiasis. Nat Rev Urol. 2015;12(10):543-57.

https://doi.org/10.1038/nrurol.2015.208

PMid:26334088 PMCid:PMC4875766

Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis primers. 2016;2:16008.

https://doi.org/10.1038/nrdp.2016.8

PMid:27188687 PMCid:PMC5685519

Sheng X, Jung T, Wesson JA, Ward MD. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci U S A. 2005;102(2):267-72.

https://doi.org/10.1073/pnas.0406835101

PMid:15625112 PMCid:PMC544292

Sandersius S, Rez P. Morphology of crystals in calcium oxalate monohydrate kidney stones. Urol Res. 2007;35(6):287-93.

https://doi.org/10.1007/s00240-007-0115-3

PMid:17899050

Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA. The Role of Macromolecules in the Formation of Kidney Stones. Urolithiasis. 2017;45(1):57-74.

https://doi.org/10.1007/s00240-016-0948-8

PMid:27913854 PMCid:PMC5253101

Khan SR, Canales BK. Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis. 2015;43 Suppl 1:109-23.

https://doi.org/10.1007/s00240-014-0705-9

PMid:25119506 PMCid:PMC4373525

Mulay SR, Eberhard JN, Desai J, Marschner JA, Kumar SV, Weidenbusch M, et al. Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease. J Am Soc Nephrol. 2017;28(3):761-8.

https://doi.org/10.1681/ASN.2016040486

PMid:27612997 PMCid:PMC5328164

Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol. 2003;14(12):3155-66.

https://doi.org/10.1097/01.ASN.0000099380.18995.F7

PMid:14638914

Kumar V, Farell G, Deganello S, Lieske JC. Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol. 2003;14(2):289-97.

https://doi.org/10.1097/01.ASN.0000046030.24938.0A

PMid:12538728

Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467-75.

https://doi.org/10.1038/nrneph.2012.113

PMid:22688746

Cochat P, Rumsby G. Primary hyperoxaluria.New Eng J Med. 2013;369(7):649-58.

https://doi.org/10.1056/NEJMra1301564

PMid:23944302

Mulay SR, Anders HJ. Crystallopathies. New Eng J Med. 2016;374(25):2465-76.

https://doi.org/10.1056/NEJMra1601611

PMid:27332905

Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol . 2008;15(2):115-20.

https://doi.org/10.1111/j.1442-2042.2007.01953.x

PMid:18269444

Ap E, Lingeman J, Coe F, Worcester E. Randall's plaque: Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 2008; 69(8). 1313-8 p.

https://doi.org/10.1038/sj.ki.5000238

PMid:16614720

Koberich S, Lohrmann C, Mittag O, Dassen T. Effects of a hospital-based education programme on self-care behaviour, care dependency and quality of life in patients with heart failure--a randomised controlled trial. J Clin Nurs. 2015;24(11-12):1643-55.

https://doi.org/10.1111/jocn.12766

PMid:25661470

Chung H-J. The role of Randall plaques on kidney stone formation. Transl Androl Urol. 2014;3(3):251-4.

Coe FL, Worcester EM, Evan AP. Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol. 2016;12(9):519-33.

https://doi.org/10.1038/nrneph.2016.101

PMid:27452364 PMCid:PMC5837277

Mohamaden WI, Wang H, Guan H, Meng X, Li J. Osteopontin and Tamma-Horsefall proteins - Macromolecules of myriad values. J Basic Appl Zool2014;67(5):158-63.

https://doi.org/10.1016/j.jobaz.2014.03.002

Reid DG, Jackson GJ, Duer MJ, Rodgers AL. Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall's plaque, pathogenesis and prophylaxis. J Urol. 2011;185(2):725-30.

https://doi.org/10.1016/j.juro.2010.09.075

PMid:21168873

Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 2005;67(2):576-91.

https://doi.org/10.1111/j.1523-1755.2005.67114.x

PMid:15673305

Marien TP, Miller NL. Characteristics of renal papillae in kidney stone formers. Minerva urologica e nefrologica. Minerva Urol Nefrol. 2016;68(6):496-515.

Mehler K, Stapenhorst L, Beck B, Hoppe B. Hyperoxaluria in patients with primary distal renal tubular acidosis. Pediatr Nephrol. 2003; 18(7): 722-3 p.

Tang R, Nancollas GH, Giocondi JL, Hoyer JR, Orme CA. Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation. Kid Int. 2006;70(1):71-8.

https://doi.org/10.1038/sj.ki.5000424

PMid:16641926

Ahmed K, Dasgupta P, Khan MS. Cystine calculi: challenging group of stones. Postgrad Med J. 2006;82(974):799-801.

https://doi.org/10.1136/pgmj.2005.044156

PMid:17148700 PMCid:PMC2653923

Xie B, Halter TJ, Borah BM, Nancollas GH. Aggregation of Calcium Phosphate and Oxalate Phases in the Formation of Renal Stones. Cryst Growth Des. 2015;15(1):204-11.

https://doi.org/10.1021/cg501209h

PMid:25598742 PMCid:PMC4291782

Imig JD, Ryan MJ. Immune and Inflammatory Role in Renal Disease. Compr Physiol. 2013;3(2):957-76.

https://doi.org/10.1002/cphy.c120028

Devarajan A. Anecdotes of lithogenesis and atherogenesis conversely liable for cardiac dysfunction and kidney stone formation. Urolithiasis. 2015;43(2):197.

https://doi.org/10.1007/s00240-015-0754-8

PMid:25660819

Lusis AJ. Atherosclerosis. Nature. 2000;407:233.

https://doi.org/10.1038/35025203

PMid:11001066 PMCid:PMC2826222

Khan SR. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res. 2012;40(2):95-112.

https://doi.org/10.1007/s00240-011-0448-9

PMid:22213019 PMCid:PMC5683185

Gabriel-Costa D. The pathophysiology of myocardial infarction-induced heart failure. Pathophysiology. 2018.

https://doi.org/10.1016/j.pathophys.2018.04.003

PMid:29685587

Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197-210.

https://doi.org/10.1016/S0140-6736(16)30677-8

White SJ, Newby AC, Johnson TW. Endothelial erosion of plaques as a substrate for coronary thrombosis. Thromb Haemost. 2016;115(3):509-19.

https://doi.org/10.1160/th15-09-0765

PMid:26791872

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Circulation. 2012;126(16):2020-35.

https://doi.org/10.1161/CIR.0b013e31826e1058

PMid:22923432

Rule AD, Roger VL, Melton LJ, Bergstralh EJ, Li X, Peyser PA, et al. Kidney Stones Associate with Increased Risk for Myocardial Infarction. J Am Soc Nephrol. 2010;21(10):1641-4.

https://doi.org/10.1681/ASN.2010030253

PMid:20616170 PMCid:PMC3013539

Heilberg IP, Schor N. Renal stone disease: Causes, evaluation and medical treatment. Arq Bras Endocrinol Metabol. 2006;50(4):823-31.

https://doi.org/10.1590/S0004-27302006000400027

Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Samuel S, Klarenbach SW, et al. Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol. 2014;9(3):506-12.

https://doi.org/10.2215/CJN.04960513

PMid:24311706 PMCid:PMC3944758

Ferraro PM, Taylor EN, Eisner BH, Gambaro G, Rimm EB, Mukamal KJ, et al. History of kidney stones and risk of coronary heart disease. JAMA. 2013;310(4):408-15.

https://doi.org/10.1001/jama.2013.8780

PMid:23917291 PMCid:PMC4019927

Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Dietary and lifestyle risk factors associated with incident kidney stones in men and women. J Urol. 2017;198(4):858-63.

https://doi.org/10.1016/j.juro.2017.03.124

PMid:28365271 PMCid:PMC5599330

Yang S, Nguyen N, Center J, Eisman J, Nguyen T. Association between hypertension and fragility fracture: a longitudinal study. Osteoporos Int. 2014;25(1):97-103.

https://doi.org/10.1007/s00198-013-2457-8

PMid:23892585

Refbacks

  • There are currently no refbacks.