Cover Image

Identification of the Key Genes of Autism Spectrum Disorder Through Protein-Protein Interaction Network

Mona Zamanian Azodi, Mostafa Rezaei-Tavirani, Majid Rezaei-Tavirani

Background: Currently, the prevalence of autism spectrum disorder (ASD) is increasing, which widely spurs the interest in the molecular investigation. Thereby, a better understanding of the given disorder mechanisms is likely to be achieved. Bioinformatics suiting protein-protein interactions analysis via the application of high-throughput studies, such as protein array, is one of these achievements.Materials and Methods: The gene expression data from Gene Expression Omnibus (GEO) database were downloaded, and the expression profile of patients with developmental delay and autistic features were analyzed via Cytoscape and its relevant plug-ins.Results: Our findings indicated that EGFR, ACTB, RHOA, CALM1, MAPK1, and JUN genes as the hub-bottlenecks and their related terms could be important in ASD risk. In other words, any expression modification in these genes could trigger dysfunctions in the corresponding biological processes.Conclusion: We suggest that differentially expressed genes could be used as suitable targets for ASD after being validated.[GMJ.2019;8:e1367]

Autism Spectrum Disorder; Transcriptome; Protein Interaction Maps; Gene Ontology

Ngounou Wetie AG, Wormwood KL, Russell S, Ryan JP, Darie CC, Woods AG. A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder. Autsim Res.2015;8(3):338-50.

https://doi.org/10.1002/aur.1450

PMid:25626423

Loth E, Spooren W, Ham LM, Isaac MB, Auriche-Benichou C, Banaschewski T et al. Identification and validation of biomarkers for autism spectrum disorders. Nat Rev Drug Discov. 2016;15(1):70-3.

https://doi.org/10.1038/nrd.2015.7

PMid:26718285

Guney E, Iseri E. Genetic and environmental factors in autism. Recent Advances in Autism Spectrum Disorders-Volume I. InTech; 2013. 321-31.

https://doi.org/10.5772/53295

Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther. 2018; 22(5):1-23.

https://doi.org/10.1007/s40291-018-0352-x

PMid:30039193 PMCid:PMC6132446

Bazelmans T, Jones EJ, Ghods S, Corrigan S, Toth K, Charman T et al. Heart rate mean and variability as a biomarker for phenotypic variation in preschoolers with autism spectrum disorder. Autism Res. 2018;70-3.

https://doi.org/10.1002/aur.1982

Sayehmiri F, Babaknejad N, Bahrami S, Sayehmiri K, Darabi M, Rezaei-Tavirani M. Zn/Cu levels in the field of autism disorders: a systematic review and meta-analysis. Iran J Child Neurol. 2015;9(4):1-9.

PMid:26664435 PMCid:PMC4670971

Hwang BJ, Mohamed MA, Brašić JR. Molecular imaging of autism spectrum disorder. Int Rev Psychiatry. 2017;29(6):530-54.

https://doi.org/10.1080/09540261.2017.1397606

PMid:29231773

Klin A. Biomarkers in Autism Spectrum Disorder: Challenges, Advances, and the Need for Biomarkers of Relevance to Public Health. Focus. 2018;16(2):135-42.

https://doi.org/10.1176/appi.focus.20170047

Howsmon DP, Adams JB, Kruger U, Geis E, Gehn E, Hahn J. Erythrocyte fatty acid profiles in children are not predictive of autism spectrum disorder status: a case control study. Biomarker Res. 2018;6(1):1-9.

https://doi.org/10.1186/s40364-018-0125-z

PMid:29568526 PMCid:PMC5853097

Amal H, Barak B, Bhat V, Gong G, Joughin BA, Wishnok JS et al. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol psychiatry. 2018:1.

https://doi.org/10.1038/s41380-018-0113-6

Eun JW, Yang HD, Kim SH, Hong S, Park KN, Nam SW et al. Identification of novel biomarkers for prediction of neurological prognosis following cardiac arrest. Oncotarget. 2017;8(10):16144-157.

https://doi.org/10.18632/oncotarget.14877

PMid:28147324 PMCid:PMC5369953

Atan NAD, Koushki M, Tavirani MR, Ahmadi NA. Protein-Protein Interaction Network Analysis of Salivary Proteomic Data in Oral Cancer Cases. Asian Pac J Cancer Prev. 2018; 19(6): 1639–45.

PMCid:PMC6103602

Azodi MZ, Rezaei-Tavirani M, Nejad MR, Rezaei-Tavirani M. Human Prolactinoma: A View of Protein-Protein Interaction Pattern. Int J Endocrinol Metab Disord. 2018; 16(4): 1-6.

Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2010;27(3):431-2.

https://doi.org/10.1093/bioinformatics/btq675

PMid:21149340 PMCid:PMC3031041

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017; 45: 362–68.

https://doi.org/10.1093/nar/gkw937

PMid:27924014 PMCid:PMC5210637

Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ. 2016;4:1-22.

https://doi.org/10.7717/peerj.2775

PMid:28028462 PMCid:PMC5183126

Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3.

https://doi.org/10.1093/bioinformatics/btt019

PMid:23325622 PMCid:PMC3582273

Woods AG, Wetie AGN, Sokolowska I, Russell S, Ryan JP, Michel TM et al. Mass spectrometry as a tool for studying autism spectrum disorder. J mol psychiatry. 2013;1(1):1-10.

https://doi.org/10.1186/2049-9256-1-6

PMid:25408899 PMCid:PMC4223881

Azodi MZ, Tavirani MR, Oskouie AA, Mansouri V, Hamdieh M, Nejati N et al. Introducing Transthyretin as a Differentially Expressed Protein in Washing Subtype of Obsessive-Compulsive Disorder. Basic Clin Neurosci. 2018;9(3):187-194.

https://doi.org/10.29252/nirp.bcn.9.3.187

PMid:30034649 PMCid:PMC6037430

Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497-500.

https://doi.org/10.1126/science.1099314

PMid:15118125

Rivière J-B, Van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nature genetics. 2012;44(4):1-17.

https://doi.org/10.1038/ng.1091

Gou L, Wang W, Tong A, Yao Y, Zhou Y, Yi C et al. Proteomic identification of RhoA as a potential biomarker for proliferation and metastasis in hepatocellular carcinoma. J Mol Med. 2011;89(8):817-27.

https://doi.org/10.1007/s00109-011-0753-3

PMid:21475975

Guo C, Liu S, Wang J, Sun M-Z, Greenaway FT. ACTB in cancer. Clin. Chim. Acta. 2013;417:39-44.

https://doi.org/10.1016/j.cca.2012.12.012

PMid:23266771

Zhang Y, Gu Z, Qiu G. The association study of calmodulin 1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. BioMed Res Int. 2014;2014:1-8.

https://doi.org/10.1155/2014/168106

Yiwei T, Hua H, Hui G, Mao M, Xiang L. HOTAIR interacting with MAPK1 regulates ovarian cancer skov3 cell proliferation, migration, and invasion. Med Sci Monit. 2015;21:1856- 63.

https://doi.org/10.12659/MSM.893528

PMid:26117268 PMCid:PMC4489685

Saunders F, Yoshida K, Barr R, Macdonald H, Reid D, Aspden R et al. Biomarkers of osteoarthritis progression. Osteoarthr Cartil. 2013;21:78.

https://doi.org/10.1016/j.joca.2013.02.171

Prusty BK, Das BC. Constitutive activation of transcription factor AP‐1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP‐1 activity in HeLa cells by curcumin. ‎Int. J. Cancer. 2005;113(6):951-60.

https://doi.org/10.1002/ijc.20668

PMid:15514944

Russo AJ. Increased epidermal growth factor receptor (EGFR) associated with hepatocyte growth factor (HGF) and symptom severity in children with autism spectrum disorders (ASDs). J Cent Nerv Syst Dis. 2014;6: 79-83.

https://doi.org/10.4137/JCNSD.S13767

PMid:25249767 PMCid:PMC4167315

Russo AJ. Decreased phosphorylated protein kinase B (Akt) in individuals with autism associated with high epidermal growth factor receptor (EGFR) and low gamma-aminobutyric acid (GABA). Biomark insights. 2015;10: 89-94.

https://doi.org/10.4137/BMI.S21946

PMid:26508828 PMCid:PMC4607071

Goitia V, Oquendo M, Stratton R. Case of 7p22. 1 microduplication detected by whole genome microarray (REVEAL) in workup of child diagnosed with autism. Case Rep Genet. 2015;2015. 1-6.

Cuvertino S, Stuart HM, Chandler KE, Roberts NA, Armstrong R, Bernardini L et al. ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder. Am. J. Hum. Genet.2017;101(6):1021-33.

https://doi.org/10.1016/j.ajhg.2017.11.006

PMid:29220674 PMCid:PMC5812896

Gilbert J, Man H-Y. Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity. FRONT CELL NEUROSCI. 2017;11:1-25.

https://doi.org/10.3389/fncel.2017.00359

PMid:29209173 PMCid:PMC5701944

Packer A. Rho family of enzymes at crossroads of autism. 2013.

Wagle M-C, Kirouac D, Klijn C, Liu B, Mahajan S, Junttila M et al. A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types. NPJ Precis Oncol.. 2018;2(1):7. 1-12.

Wei H, Alberts I, Li X. The apoptotic perspective of autism. Int J Dev Neurosci. 2014;36:13-8.

https://doi.org/10.1016/j.ijdevneu.2014.04.004

PMid:24798024

Calabrò M, Mandelli L, Crisafulli C, Sidoti A, Jun T-Y, Lee S-J et al. Genes Involved in Neurodevelopment, Neuroplasticity, and Bipolar Disorder: CACNA1C, CHRNA1, and MAPK1. Neuropsychobiology. 2016;74(3):159-68.

https://doi.org/10.1159/000468543

PMid:28494468

Ernst C. Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends neurosci. 2016;39(5):290-9.

https://doi.org/10.1016/j.tins.2016.03.001

PMid:27032601

Upadhya D, Ogata M, Reneker LW. MAPK1 is required for establishing the pattern of cell proliferation and for cell survival during lens development. Development. 2013;140(7):1573-82.

https://doi.org/10.1242/dev.081042

PMid:23482492 PMCid:PMC3596996

Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol.2002;4(5):131-6.

https://doi.org/10.1038/ncb0502-e131

PMid:11988758

Refbacks

  • There are currently no refbacks.