Cover Image

A Systematic Review of Screening Tests for Chronic Kidney Disease: An Accuracy Analysis

Fatemeh Keshvari-Shad, Sakineh Hajebrahimi, Maria Pilar Laguna Pes, Alireza Mahboub-Ahari, Mohammad Nouri, Farshad Seyednejad, Mahmood Yousefi

This systematic review was conducted to assess the diagnostic accuracy of chronic kidney disease screening tests in the general population. MEDLINE, EMBASE, Web of Science, Scopus, The Cochrane Library and ProQuest databases were searched for English-language publications up to November 2016. Two reviewers independently screened studies and extracted study data in standardized tables. Methodological quality was assessed using the QUADAS-2 tool. Sensitivity and specificity of all available screening methods were identified through included studies. Ten out of 1349 screened records included for final analysis. Sensitivities of the dipstick test with a cutoff value of trace were ranged from 37.1% to 69.4% and specificities from 93.7% to 97.3% for the detection of ACR>30 mg/g. The diagnostic sensitivities of the UAC>10 mg/dL testing was shown to vary from 40% to 87%, and specificities ranged from 75% to 96%. While the sensitivities of ACR were fluctuating between 74% and 90%, likewise the specificities were between 77% and 88%. Sensitivities for C-G, Grubb and Larsson equations were 98.9%, 86.2%, and 70.1% respectively. In the meantime the study showed specificities of 84.8%, 84.2% and 90.5% respectively for these equations. Individual studies were highly heterogeneous in terms of target populations, type of screening tests, thresholds used to detect CKD and variations in design. Results pointed to the superiority of UAC and dipstick over the other tests in terms of all parameters involved. The diversity of methods and thresholds for detection of CKD, necessitate considering the cost parameter along with the effectiveness of tests to scale-up an efficient strategy. [GMJ.2020;9:e1573]

Chronic Kidney Disease; Screening; Sensitivity; Specificity; Systematic Review

Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS et al. Global prevalence of chronic kidney disease-a systematic review and meta-analysis. PloS one. 2016;11(7):e0158765.

PMid:27383068 PMCid:PMC4934905

Ene-Iordache B, Perico N, Bikbov B, Carminati S, Remuzzi A, Perna A et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. The Lancet Global Health. 2016;4(5):e307-e19.

Essue BM, Wong G, Chapman J, Li Q, Jan S. How are patients managing with the costs of care for chronic kidney disease in Australia? A cross-sectional study. BMC nephrology. 2013;14(1):5.

PMid:23305212 PMCid:PMC3698195

Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Annals of internal medicine. 2003;139(2):137-47.


Jaar BG, Khatib R, Plantinga L, Boulware LE, Powe NR. Principles of screening for chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2008;3(2):601-9.

PMid:18032791 PMCid:PMC6631080

Saunders MR, Cifu A, Vela M. Screening for chronic kidney disease. Jama. 2015;314(6):615-6.

PMid:26262800 PMCid:PMC4813784

Powe NR, Boulware LE. Population-based screening for CKD. American Journal of Kidney Diseases. 2009;53(3):S64-S70.

PMid:19231763 PMCid:PMC2681232

Levey AS, Becker C, Inker LA. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. Jama. 2015;313(8):837-46.

PMid:25710660 PMCid:PMC4410363

Mula-Abed W-AS, Al Rasadi K, Al-Riyami D. Estimated glomerular filtration rate (eGFR): a serum creatinine-based test for the detection of chronic kidney disease and its impact on clinical practice. Oman medical journal. 2012;27(2):108.

PMid:22496934 PMCid:PMC3321332

Vassalotti JA, Centor R, Turner BJ, Greer RC, Choi M, Sequist TD. Practical approach to detection and management of chronic kidney disease for the primary care clinician. The American journal of medicine. 2016;129(2):153-62. e7.


Levey A, Atkins R, Coresh J, Cohen E, Collins A, Eckardt K-U et al. Chronic kidney disease as a global public health problem: approaches and initiatives-a position statement from Kidney Disease Improving Global Outcomes. Kidney international. 2007;72(3):247-59.


Stevens LA, Levey AS. Current status and future perspectives for CKD testing. American Journal of Kidney Diseases. 2009;53(3):S17-S26.


Qaseem A, Hopkins RH, Sweet DE, Starkey M, Shekelle P. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: a clinical practice guideline from the American College of Physicians. Annals of internal medicine. 2013;159(12):835-47.


Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. American Journal of Kidney Diseases. 2014;63(5):713-35.


Palmer AJ, Valentine WJ, Chen R, Mehin N, Gabriel S, Bregman B et al. A health economic analysis of screening and optimal treatment of nephropathy in patients with type 2 diabetes and hypertension in the USA. Nephrology Dialysis Transplantation. 2008;23(4):1216-23.


Bello AK, Nwankwo E, El Nahas AM. Prevention of chronic kidney disease: a global challenge. Kidney International. 2005;68:S11-S7.


Yousefi M, Najafi S, Ghaffari S, Mahboub-Ahari A, Ghaderi H. Comparison of SF-6D and EQ-5D scores in patients with breast cancer. Iranian Red Crescent Medical Journal. 2016;18(5):e23556.

Yousefi M, Sheikhrobat B, Najafi S, Ghaffari S, Ghaderi H, Memarzadeh SE et al. Mapping catquest scores onto EQ-5D utility values in patients with cataract disease. Iranian Red Crescent Medical Journal. 2016;19(5):e21928.

Levey AS, De Jong PE, Coresh J, Nahas ME, Astor BC, Matsushita K et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney international. 2011;80(1):17-28.


Polaris JJ, Katz JN. "Appropriate" diagnostic testing: supporting diagnostics with evidence-based medicine and shared decision making. BMC research notes. 2014;7(1):922.

PMid:25515327 PMCid:PMC4301652

McInnes MD, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. Jama. 2018;319(4):388-96.


Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine. 2011;155(8):529-36.


Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Continuing Education in Anaesthesia Critical Care & Pain. 2008;8(6):221-3.

CfRa D. CRD's guidance for undertaking reviews in health care. York Publishing Services Ltd. 2009;32.

Park JI, Baek H, Kim BR, Jung HH. Comparison of urine dipstick and albumin: creatinine ratio for chronic kidney disease screening: A population-based study. PloS one. 2017;12(2):e0171106.

PMid:28151999 PMCid:PMC5289498

Konta T, Hao Z, Takasaki S, Abiko H, Ishikawa M, Takahashi T et al. Clinical utility of trace proteinuria for microalbuminuria screening in the general population. Clinical and experimental nephrology. 2007;11(1):51-5.


Gansevoort RT, Verhave JC, Hillege HL, Burgerhof JG, Bakker SJ, De Zeeuw D et al. The validity of screening based on spot morning urine samples to detect subjects with microalbuminuria in the general population. Kidney International. 2005;67:S28-S35.


Jafar TH, Chaturvedi N, Hatcher J, Levey AS. Use of albumin creatinine ratio and urine albumin concentration as a screening test for albuminuria in an Indo-Asian population. Nephrology Dialysis Transplantation. 2007;22(8):2194-200.


Chang C-C, Su M-J, Ho J-L, Tsai Y-H, Tsai W-T, Lee S-J et al. The efficacy of semi-quantitative urine protein-to-creatinine (P/C) ratio for the detection of significant proteinuria in urine specimens in health screening settings. SpringerPlus. 2016;5(1):1791.

PMid:27795933 PMCid:PMC5063823

Graziani MS, Gambaro G, Mantovani L, Sorio A, Yabarek T, Abaterusso C et al. Diagnostic accuracy of a reagent strip for assessing urinary albumin excretion in the general population. Nephrology Dialysis Transplantation. 2008;24(5):1490-4.


Xue N, Zhang X, Teng J, Fang Y, Ding X. A Cross-Sectional Study on the Use of Urinalysis for Screening Early-Stage Renal Insufficiency. Nephron. 2016;132(4):335-41.


Wetmore JB, Palsson R, Belmont JM, Sigurdsson G, Franzson L, Indridason OS. Discrepancies between creatinine-and cystatin C-based equations: implications for identification of chronic kidney disease in the general population. Scandinavian journal of urology and nephrology. 2010;44(4):242-50.


van der Velde M, de Jong PE, Gansevoort RT. Comparison of the yield of different screening approaches to detect chronic kidney disease. Nephrology Dialysis Transplantation. 2010;25(10):3222-30.


White SL, Yu R, Craig JC, Polkinghorne KR, Atkins RC, Chadban SJ. Diagnostic accuracy of urine dipsticks for detection of albuminuria in the general community. American journal of kidney diseases. 2011;58(1):19-28.


Moyer VA. Screening for chronic kidney disease: US Preventive Services Task Force recommendation statement. Annals of internal medicine. 2012;157(8):567-70.


Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney international. 2005;67(6):2089-100.


Kellum JA, Bellomo R, Ronco C. Definition and classification of acute kidney injury. Nephron Clinical Practice. 2008;109(4):c182-c7.


Arici M. Clinical assessment of a patient with chronic kidney disease. Management of Chronic Kidney Disease. Springer; 2014. p. 15-28.

Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney international. 2011;80(12):1258-70.


Fisher H, Hsu C-y, Vittinghoff E, Lin F, Bansal N. Comparison of associations of urine protein-creatinine ratio versus albumin-creatinine ratio with complications of CKD: a cross-sectional analysis. American Journal of Kidney Diseases. 2013;62(6):1102-8.

PMid:24041612 PMCid:PMC3840083

Sam R, Shaykh M, Pegoraro A, Khalili V, Hristea I, Singh A et al. The significance of trace proteinuria. American journal of nephrology. 2003;23(6):438-41.


Patel HP. The abnormal urinalysis. Pediatric Clinics. 2006;53(3):325-37.


Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney international. 2003;63(4):1468-74.


Morris R, Riley R, Doug M, Deeks J, Kilby M. Diagnostic accuracy of spot urinary protein and albumin to creatinine ratios for detection of significant proteinuria or adverse pregnancy outcome in patients with suspected pre-eclampsia: systematic review and meta-analysis. Bmj. 2012;345:e4342.

PMid:22777026 PMCid:PMC3392077

Wahbeh AM, Ewais MH, Elsharif ME. Comparison of 24-hour urinary protein and protein-to-creatinine ratio in the assessment of proteinuria. Saudi Journal of Kidney Diseases and Transplantation. 2009;20(3):443.

Wu H-Y, Peng Y-S, Chiang C-K, Huang J-W, Hung K-Y, Wu K-D et al. Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA internal medicine. 2014;174(7):1108-15.


Nahas ME. The global challenge of chronic kidney disease. Kidney international. 2005;68(6):2918-29.


Komenda P, Ferguson TW, Macdonald K, Rigatto C, Koolage C, Sood MM et al. Cost-effectiveness of primary screening for CKD: a systematic review. American Journal of Kidney Diseases. 2014;63(5):789-97.


Ferguson TW, Tangri N, Tan Z, James MT, Lavallee BD, Chartrand CD et al. Screening for chronic kidney disease in Canadian indigenous peoples is cost-effective. Kidney international. 2017;92(1):192-200.


Flood D, Garcia P, Douglas K, Hawkins J, Rohloff P. Screening for chronic kidney disease in a community-based diabetes cohort in rural Guatemala: a cross-sectional study. BMJ open. 2018;8(1):e019778.

PMid:29358450 PMCid:PMC5781190

Fink HA, Ishani A, Taylor BC, Greer NL, MacDonald R, Rossini D et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a systematic review for the US Preventive Services Task Force and for an American College of Physicians Clinical Practice Guideline. Annals of internal medicine. 2012;156(8):570-81.

Samal L, Linder JA. The primary care perspective on routine urine dipstick screening to identify patients with albuminuria. Clinical journal of the American Society of Nephrology. 2012:CJN. 12681211.


Parikh R, Mathai A, Parikh S, Sekhar GC, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian journal of ophthalmology. 2008;56(1):45.

PMid:18158403 PMCid:PMC2636062

Van Stralen KJ, Stel VS, Reitsma JB, Dekker FW, Zoccali C, Jager KJ. Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney international. 2009;75(12):1257-63.


Leeflang MM, Rutjes AW, Reitsma JB, Hooft L, Bossuyt PM. Variation of a test's sensitivity and specificity with disease prevalence. Canadian Medical Association Journal. 2013:cmaj. 121286.

PMid:23798453 PMCid:PMC3735771

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological). 1995;57(1):289-300.

Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for proteinuria in US adults: a cost-effectiveness analysis. Jama. 2003;290(23):3101-14.



  • There are currently no refbacks.