Cover Image

Tau Abnormalities and Autophagic Defects in Neurodegenerative Disorders; A Feed-forward Cycle

Nastaran Samimi, Akiko Asada, Kanae Ando

Abnormal deposition of misfolded proteins is a neuropathological characteristic shared by many neurodegenerative disorders including Alzheimer’s disease (AD). Generation of excessive amounts of aggregated proteins and impairment of degradation systems for misfolded proteins such as autophagy can lead to accumulation of proteins in diseased neurons. Molecules that contribute to both these effects are emerging as critical players in disease pathogenesis. Furthermore, impairment of autophagy under disease conditions can be both a cause and a consequence of abnormal protein accumulation. Specifically, disease-causing proteins can impair autophagy, which further enhances the accumulation of abnormal proteins. In this short review, we focus on the relationship between the microtubule-associated protein tau and autophagy to highlight a feed-forward mechanism in disease pathogenesis. [GMJ.2020;9:e1681]

Neurodegenerative Diseases; Tauopathy; Autophagy; Microtubule Binding Protein; Tau; Phosphorylation; Vesicle Trafficking

Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018;217(1):51-63.

https://doi.org/10.1083/jcb.201709072

PMid:29127110 PMCid:PMC5748993

Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci. 2007;8(9):663-72.

https://doi.org/10.1038/nrn2194

PMid:17684513

Stoothoff WH, Johnson GV. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta. 2005;1739(2-3):280-97.

https://doi.org/10.1016/j.bbadis.2004.06.017

PMid:15615646

Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5-21.

https://doi.org/10.1038/nrn.2015.1

PMid:26631930

Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83(13):4913-7.

https://doi.org/10.1073/pnas.83.13.4913

PMid:3088567 PMCid:PMC323854

Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y. Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J Biol Chem. 1992;267(24):17047-54.

Hanger DP, Betts JC, Loviny TL, Blackstock WP, Anderton BH. New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J Neurochem. 1998;71(6):2465-76.

https://doi.org/10.1046/j.1471-4159.1998.71062465.x

PMid:9832145

Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem. 1995;270(2):823-9.

https://doi.org/10.1074/jbc.270.2.823

PMid:7822317

Holtzman DM, Carrillo MC, Hendrix JA, Bain LJ, Catafau AM, Gault LM et al. Tau: From research to clinical development. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2016;12(10):1033-9.

https://doi.org/10.1016/j.jalz.2016.03.018

PMid:27154059

Wolfe MS. Tau mutations in neurodegenerative diseases. J Biol Chem. 2009;284(10):6021-5.

https://doi.org/10.1074/jbc.R800013200

PMid:18948254

Goedert M, Spillantini MG. A century of Alzheimer's disease. Science. 2006;314(5800):777-81.

https://doi.org/10.1126/science.1132814

PMid:17082447

Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33 Suppl 1:S123-39.

https://doi.org/10.3233/JAD-2012-129031

PMid:22710920

Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 2004;117(Pt 24):5721-9.

https://doi.org/10.1242/jcs.01558

PMid:15537830

Kimura T, Ishiguro K, Hisanaga S. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci. 2014;7:65.

https://doi.org/10.3389/fnmol.2014.00065

PMid:25076872 PMCid:PMC4097945

Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimer's dis. 2006;9(3 Suppl):309-17.

https://doi.org/10.3233/JAD-2006-9S335

PMid:16914869

Leugers CJ, Koh JY, Hong W, Lee G. Tau in MAPK activation. Front Neurol. 2013;4:161.

https://doi.org/10.3389/fneur.2013.00161

PMid:24146661 PMCid:PMC3797993

Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell. 2004;116(5):671-82.

https://doi.org/10.1016/S0092-8674(04)00170-9

Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89(2):297-308.

https://doi.org/10.1016/S0092-8674(00)80208-1

Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation. Neuron. 2013;78(1):94-108.

https://doi.org/10.1016/j.neuron.2013.02.003

PMid:23583109 PMCid:PMC3784324

Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D. AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid beta-peptide exposure. Biochem J. 2011;434(3):503-12.

https://doi.org/10.1042/BJ20101485

PMid:21204788

Iijima-Ando K, Zhao L, Gatt A, Shenton C, Iijima K. A DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration. Hum Mol Genet. 2010;19(10):1930-8.

https://doi.org/10.1093/hmg/ddq068

PMid:20159774 PMCid:PMC2860892

Sironi JJ, Yen SH, Gondal JA, Wu Q, Grundke-Iqbal I, Iqbal K. Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett. 1998;436(3):471-5.

https://doi.org/10.1016/S0014-5793(98)01185-5

Pei JJ, An WL, Zhou XW, Nishimura T, Norberg J, Benedikz E et al. P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Lett. 2006;580(1):107-14.

https://doi.org/10.1016/j.febslet.2005.11.059

PMid:16364302

Lasagna-Reeves CA, de Haro M, Hao S, Park J, Rousseaux MW, Al-Ramahi I et al. Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model. Neuron. 2016;92(2):407-18.

https://doi.org/10.1016/j.neuron.2016.09.022

PMid:27720485 PMCid:PMC5745060

Saito T, Oba T, Shimizu S, Asada A, Iijima KM, Ando K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum Mol Genet. 2019.

https://doi.org/10.1093/hmg/ddz120

PMid:31174206

Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24(1):9-23.

https://doi.org/10.1038/cr.2013.169

PMid:24366340 PMCid:PMC3879711

Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG et al. Autophagy and Alzheimer's Disease: From Molecular Mechanisms to Therapeutic Implications. Front Aging Neurosci. 2018;10:04.

https://doi.org/10.3389/fnagi.2018.00004

PMid:29441009 PMCid:PMC5797541

Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem. 2018;293(15):5414-24.

https://doi.org/10.1074/jbc.R117.818237

PMid:29247007 PMCid:PMC5900761

Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nature genetics. 2005;37(7):771.

https://doi.org/10.1038/ng1591

PMid:15980862

Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345-57.

https://doi.org/10.1038/nrn3961

PMid:25991442

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21-35.

https://doi.org/10.1038/nrm3025

PMid:21157483 PMCid:PMC3390257

Caccamo A, Branca C, Talboom JS, Shaw DM, Turner D, Ma L et al. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35(41):14042-56.

https://doi.org/10.1523/JNEUROSCI.2781-15.2015

PMid:26468204 PMCid:PMC4604237

Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed). 2012;4:941-52.

https://doi.org/10.2741/s310

PMid:22202101

Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol. 2013;105:49-59.

https://doi.org/10.1016/j.pneurobio.2013.03.001

PMid:23528736

Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 2007;14(5):1029-39.

https://doi.org/10.1038/sj.cdd.4402099

PMid:17256008

Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest. 2007;117(3):648-58.

https://doi.org/10.1172/JCI29715

PMid:17304350 PMCid:PMC1794119

Dickey CA, Dunmore J, Lu B, Wang JW, Lee WC, Kamal A et al. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J. 2006;20(6):753-5.

https://doi.org/10.1096/fj.05-5343fje

PMid:16464956

Chiku T, Hayashishita M, Saito T, Oka M, Shinno K, Ohtake Y et al. S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiol Aging. 2018;71:255-64.

https://doi.org/10.1016/j.neurobiolaging.2018.07.021

PMid:30172839

Dolan PJ, Johnson GV. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J Biol Chem. 2010;285(29):21978-87.

https://doi.org/10.1074/jbc.M110.110940

PMid:20466727 PMCid:PMC2903354

Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain. 2012;135(Pt 7):2169-77.

https://doi.org/10.1093/brain/aws143

PMid:22689910 PMCid:PMC3381726

Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun. 2014;5:3496.

https://doi.org/10.1038/ncomms4496

PMid:24667209 PMCid:PMC3990284

Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015;47:e147.

https://doi.org/10.1038/emm.2014.117

PMid:25766616 PMCid:PMC4351408

Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci. 2008;27(5):1119-30.

https://doi.org/10.1111/j.1460-9568.2008.06084.x

PMid:18294209

Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM et al. Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy. 2010;6(1):182-3.

https://doi.org/10.4161/auto.6.1.10815

PMid:20023429

Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci. 2007;25(1):59-68.

https://doi.org/10.1111/j.1460-9568.2006.05226.x

PMid:17241267 PMCid:PMC3191918

Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, Silva AJ et al. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell. 2013;12(3):370-80.

https://doi.org/10.1111/acel.12057

PMid:23425014 PMCid:PMC3655115

Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018;28(1):3-13.

https://doi.org/10.1111/bpa.12545

PMid:28703923 PMCid:PMC5739982

Ando K, Oka M, Ohtake Y, Hayashishita M, Shimizu S, Hisanaga S et al. Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated. Biochem Biophys Res Commun. 2016;478(2):929-34.

https://doi.org/10.1016/j.bbrc.2016.08.053

PMid:27520376 PMCid:PMC5675734

Li L, Guan KL. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a negative regulator of the mammalian target of rapamycin complex 1 (mTORC1). J Biol Chem. 2013;288(1):703-8.

https://doi.org/10.1074/jbc.C112.396903

PMid:23184942 PMCid:PMC3537069

Kimura T, Sharma G, Ishiguro K, Hisanaga SI. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front Neurosci. 2018;12:44.

https://doi.org/10.3389/fnins.2018.00044

PMid:29467609 PMCid:PMC5808175

Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain Res. 1997;763(2):145-58.

https://doi.org/10.1016/S0006-8993(97)00384-3

Ferreira A, Bigio EH. Calpain-mediated tau cleavage: a mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med. 2011;17(7-8):676-85.

https://doi.org/10.2119/molmed.2010.00220

PMid:21442128 PMCid:PMC3146621

Johnson CW, Melia TJ, Yamamoto A. Modulating macroautophagy: a neuronal perspective. Future Med Chem. 2012;4(13):1715-31.

https://doi.org/10.4155/fmc.12.112

PMid:22924509 PMCid:PMC3566761

Vijayan V, Verstreken P. Autophagy in the presynaptic compartment in health and disease. J Cell Biol. 2017;216(7):1895-906.

https://doi.org/10.1083/jcb.201611113

PMid:28515275 PMCid:PMC5496617

Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156(6):1051-63.

https://doi.org/10.1083/jcb.200108057

PMid:11901170 PMCid:PMC2173473

Ittner LM, Fath T, Ke YD, Bi M, van Eersel J, Li KM et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci U S A. 2008;105(41):15997-6002.

https://doi.org/10.1073/pnas.0808084105

PMid:18832465 PMCid:PMC2572931

Rodriguez-Martin T, Pooler AM, Lau DHW, Morotz GM, De Vos KJ, Gilley J et al. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiol Dis. 2016;85:1-10.

https://doi.org/10.1016/j.nbd.2015.10.007

PMid:26459111 PMCid:PMC4684147

Chee FC, Mudher A, Cuttle MF, Newman TA, MacKay D, Lovestone S et al. Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis. 2005;20(3):918-28.

https://doi.org/10.1016/j.nbd.2005.05.029

PMid:16023860

Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A. 2003;100(17):9980-5.

https://doi.org/10.1073/pnas.1533448100

PMid:12872001 PMCid:PMC187908

Maday S, Holzbaur EL. Compartment-Specific Regulation of Autophagy in Primary Neurons. J Neurosci. 2016;36(22):5933-45.

https://doi.org/10.1523/JNEUROSCI.4401-15.2016

PMid:27251616 PMCid:PMC4887563

Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron. 2014;82(4):756-71.

https://doi.org/10.1016/j.neuron.2014.05.004

PMid:24853936 PMCid:PMC4135182

Decker JM, Kruger L, Sydow A, Zhao S, Frotscher M, Mandelkow E et al. Pro-aggregant Tau impairs mossy fiber plasticity due to structural changes and Ca(++) dysregulation. Acta Neuropathol Commun. 2015;3:23.

https://doi.org/10.1186/s40478-015-0193-3

PMid:25853683 PMCid:PMC4384391

Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nature communications. 2017;8:15295.

https://doi.org/10.1038/ncomms15295

PMid:28492240 PMCid:PMC5437271

McInnes J, Wierda K, Snellinx A, Bounti L, Wang YC, Stancu IC et al. Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau. Neuron. 2018;97(4):823-35 e8.

https://doi.org/10.1016/j.neuron.2018.01.022

PMid:29398363

Ittner A, Ittner LM. Dendritic Tau in Alzheimer's Disease. Neuron. 2018;99(1):13-27.

https://doi.org/10.1016/j.neuron.2018.06.003

PMid:30001506

Akwa Y, Gondard E, Mann A, Capetillo-Zarate E, Alberdi E, Matute C et al. Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Mol Psychiatry. 2018;23(6):1530-40.

https://doi.org/10.1038/mp.2017.142

PMid:28696431 PMCid:PMC5641448

Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983-97.

https://doi.org/10.1038/nm.3232

PMid:23921753

Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010;141(7):1146-58.

https://doi.org/10.1016/j.cell.2010.05.008

PMid:20541250 PMCid:PMC3647462

Plotegher N, Civiero L. Neuronal autophagy, alpha-synuclein clearance, and LRRK2 regulation: a lost equilibrium in parkinsonian brain. J Neurosci. 2012;32(43):14851-3.

https://doi.org/10.1523/JNEUROSCI.3588-12.2012

PMid:23100407 PMCid:PMC6704826

Xia Q, Wang H, Hao Z, Fu C, Hu Q, Gao F et al. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J. 2016;35(2):121-42.

https://doi.org/10.15252/embj.201591998

PMid:26702100 PMCid:PMC4718457

Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741-52.

https://doi.org/10.1038/nrm2239

Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol. 2007;170(1):75-86.

https://doi.org/10.2353/ajpath.2007.060524

PMid:17200184 PMCid:PMC1762689

Toth ML, Simon P, Kovacs AL, Vellai T. Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci. 2007;120(Pt 6):1134-41.

https://doi.org/10.1242/jcs.03401

PMid:17327275

Chu CT, Zhu J, Dagda R. Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy. 2007;3(6):663-6.

https://doi.org/10.4161/auto.4625

PMid:17622797 PMCid:PMC2779565

Hirt J, Porter K, Dixon A, McKinnon S, Liton PB. Contribution of autophagy to ocular hypertension and neurodegeneration in the DBA/2J spontaneous glaucoma mouse model. Cell Death Discov. 2018;4:14.

https://doi.org/10.1038/s41420-018-0077-y

PMid:30210817 PMCid:PMC6127277

Refbacks

  • There are currently no refbacks.