
Construction of A Synthetic Gene Encoding the Multi-Epitope of Toxoplasma gondii and Demonstration of the Relevant Recombinant Protein Production: A Vaccine Candidate
Raizman RE, Neva FA. Detection of circulating antigen in acute experimental infections with Toxoplasma gondii. J Infect Dis. 1975;132(1):44-48.
https://doi.org/10.1093/infdis/132.1.44
PMid:808579
Dubey JP. The history of Toxoplasma gondii-the first 100 years. J Eukaryot Microbiol. 2008;55(6):467-475.
https://doi.org/10.1111/j.1550-7408.2008.00345.x
PMid:19120791
Dubey JP. Toxoplasmosis of animals and humans. CRC press; 2016.
https://doi.org/10.1201/9781420092370
Lindsay D, Dubey J. Toxoplasma gondii: the changing paradigm of congenital toxoplasmosis. Parasitology. 2011;138(14):1829-1831.
https://doi.org/10.1017/S0031182011001478
PMid:21902872
Sensini A. Toxoplasma gondii infection in pregnancy: opportunities and pitfalls of serological diagnosis. Clin Microbiol and Infect. 2006;12(6):504-512.
https://doi.org/10.1111/j.1469-0691.2006.01444.x
PMid:16700697
Alibakhshi A, Bandehpour M, Nafarieh T, et al. In silico Analysis of Immunologic Regions of Surface Antigens (Sags) of Toxoplasma gondii. NBM. 2017;5(3):109-118.
Hiszczyńska-Sawicka E, Olędzka G, Holec-Gąsior L, et al. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet Parasitol. 2011;177(3-4):281-289.
https://doi.org/10.1016/j.vetpar.2010.11.047
PMid:21251760
Foroutan M, Ghaffarifar F, Sharifi Z, et al. Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii. Infect Genet Evol. 2018;62:1-204-93.
https://doi.org/10.1016/j.meegid.2018.04.033
PMid:29705360
Kulkarni R, Sapkal G, Mahishi L, et al. Design and characterization of polytope construct with multiple B and TH epitopes of Japanese encephalitis virus. Virus res. 2012;166(1-2):77-86.
https://doi.org/10.1016/j.virusres.2012.03.006
PMid:22445688
Karpenko LI, Bazhan SI, Antonets DV, et al. Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert rev vaccines. 2014;13(1):155-173.
https://doi.org/10.1586/14760584.2014.861748
PMid:24308576
Gershoni JM, Roitburd-Berman A, Siman-Tov DD, et al. Epitope mapping. BioDrugs. 2007;21(3):145-156.
https://doi.org/10.2165/00063030-200721030-00002
PMid:17516710 PMCid:PMC7100438
Pomés A. Relevant B cell epitopes in allergic disease. In arch of allergy immunol. 2010;152(1):1-11.
https://doi.org/10.1159/000260078
PMid:19940500 PMCid:PMC2956005
Gazzinelli RT, Hakim F, Hieny S, et al. Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol. 1991;146(1):286-292.
Van MR. Structural and functional approaches to the study of protein antigenicity. Immunol Today. 1989;10(8):266-272.
https://doi.org/10.1016/0167-5699(89)90140-0
Wang Y, Wang M, Wang G, et al. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B-and T-cell epitopes from T. gondii antigens. Vaccine. 2011;29(47):8619-8623.
https://doi.org/10.1016/j.vaccine.2011.09.016
PMid:21939715
Dziadek B, Brzostek A. Recombinant ROP2, ROP4, GRA4 and SAG1 antigen-cocktails as possible tools for immunoprophylaxis of toxoplasmosis: what's next?. Bioengineered. 2012;3(6):358-364.
https://doi.org/10.4161/bioe.21541
PMid:22892593 PMCid:PMC3489714
Garcia JL, Innes EA, Katzer F. Current progress toward vaccines against Toxoplasma gondii. Vaccine (Auckl). 2014;4(1).
https://doi.org/10.2147/VDT.S57474
Quan J-H, Chu J-Q, Ismail HAHA, et al. Induction of protective immune responses by a multiantigenic DNA vaccine encoding GRA7 and ROP1 of Toxoplasma gondii. Clin Vaccine Immunol. 2012:CVI. 05385-11.
https://doi.org/10.1128/CVI.05385-11
PMid:22419676 PMCid:PMC3346315
Yang C-S, Yuk J-M, Lee Y-H, et al. Toxoplasma gondii GRA7-induced TRAF6 activation contributes to host protective immunity. Infect Immun. 2016;84(1):339-350.
https://doi.org/10.1128/IAI.00734-15
PMid:26553469 PMCid:PMC4693986
Rome ME, Beck JR, Turetzky JM, et al. Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii. Infect Immun. 2008;76(11):4865-4875.
https://doi.org/10.1128/IAI.00782-08
PMid:18765740 PMCid:PMC2573327
Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook: Springer; 2005. p. 571-607.
https://doi.org/10.1385/1-59259-890-0:571
Garnier J, Gibrat J-F, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. Vol. 266: Elsevier; 1996. p. 540-553.
https://doi.org/10.1016/S0076-6879(96)66034-0
Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567-580.
https://doi.org/10.1006/jmbi.2000.4315
PMid:11152613
Armenteros JJA, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019: 37(4):420-423.
https://doi.org/10.1038/s41587-019-0036-z
PMid:30778233
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic acids research. 2015;43(W1):W174-W181.
https://doi.org/10.1093/nar/gkv342
PMid:25883148 PMCid:PMC4489253
Zhang C, Freddolino PL, Zhang Y. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids res. 2017;45(W1):W291-W299.
https://doi.org/10.1093/nar/gkx366
PMid:28472402 PMCid:PMC5793808
Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 2007;5(1):17.
https://doi.org/10.1186/1741-7007-5-17
PMid:17488521 PMCid:PMC1878469
Laskowski RA, MacArthur MW, Moss DS, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26(2):283-291.
https://doi.org/10.1107/S0021889892009944
Saha S, Raghava G, editors. BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. International Conference on Artificial Immune Systems; 2004: Springer.
https://doi.org/10.1007/978-3-540-30220-9_16
Singh H, Ansari HR, Raghava GP. Improved method for linear B-cell epitope prediction using antigen's primary sequence. PloS one. 2013;8(5):e62216.
https://doi.org/10.1371/journal.pone.0062216
PMid:23667458 PMCid:PMC3646881
Yao B, Zhang L, Liang S, et al. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PloS one. 2012;7(9):e45152.
https://doi.org/10.1371/journal.pone.0045152
PMid:22984622 PMCid:PMC3440317
Chou P, Fasman G. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 1978: 47: 45-148..
https://doi.org/10.1002/9780470122921.ch2
Karplus P, Schulz G. Prediction of chain flexibility in proteins. Naturwissenschaften. 1985;72(4):212-213.
https://doi.org/10.1007/BF01195768
Emini EA, Hughes JV, Perlow D, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985;55(3):836-839.
https://doi.org/10.1128/JVI.55.3.836-839.1985
PMid:2991600 PMCid:PMC255070
Parker J, Guo D, Hodges R. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986;25(19):5425-5432.
https://doi.org/10.1021/bi00367a013
PMid:2430611
Kolaskar A, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS letters. 1990;276(1-2):172-174.
https://doi.org/10.1016/0014-5793(90)80535-Q
Kringelum JV, Lundegaard C, Lund O, et al. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol. 2012;8(12):e1002829.
https://doi.org/10.1371/journal.pcbi.1002829
PMid:23300419 PMCid:PMC3531324
Ansari HR, Raghava GP. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res. 2010;6(1):6.
https://doi.org/10.1186/1745-7580-6-6
PMid:20961417 PMCid:PMC2974664
Zhao L, Zhang M, Cong H. Advances in the study of HLA-restricted epitope vaccines. Human vaccines & immunotherapeutics. 2013;9(12):2577-66.
https://doi.org/10.4161/hv.26088
PMid:23955319 PMCid:PMC4162067
Argos P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol. 1990;211(4):943-958.
https://doi.org/10.1016/0022-2836(90)90085-Z
Grote A, Hiller K, Scheer M, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(suppl_2):W526-W531.
https://doi.org/10.1093/nar/gki376
PMid:15980527 PMCid:PMC1160137
Kingston RE, Chen CA, Rose JK. Calcium phosphate transfection. Current protocols in molecular biology. 2003;63(1):9.1.1- 9.1. 11
https://doi.org/10.1002/0471142727.mb0901s63
PMid:18265332
Wang Y, Wang G, Cai J, et al. Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res. 2016;115(2):459-468.
https://doi.org/10.1007/s00436-015-4824-1
PMid:26581372
Lu G, Wang L, Zhou A, et al. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii. Acta Trop. 2015;146:66-72.
https://doi.org/10.1016/j.actatropica.2015.03.013
PMid:25792417
Wang Y, Wang G, Zhang D, et al. Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1. Parasit Vectors. 2013;6(1):125.
https://doi.org/10.1186/1756-3305-6-125
PMid:23631709 PMCid:PMC3655890
Romano P, Giugno R, Pulvirenti A. Tools and collaborative environments for bioinformatics research. Brief Bioinform. 2011;12(6):549-561.
https://doi.org/10.1093/bib/bbr055
PMid:21984743 PMCid:PMC3220874
Wang Y, Zhang D, Yin H, et al. Advances in predicting methods of antigen epitopes. Chinese Veterinary Science/Zhongguo Shouyi Kexue. 2009: 39(10):938-940
Garnier J, Robson B. The GOR method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation: Springer; 1989. p. 417-465.
https://doi.org/10.1007/978-1-4613-1571-1_10
Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. 1981;78(6):3824-3828.
https://doi.org/10.1073/pnas.78.6.3824
PMid:6167991 PMCid:PMC319665
Saha S, Raghava G. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins : Structure, Function, and Bioinformatics. 2006;65(1):40-48.
https://doi.org/10.1002/prot.21078
PMid:16894596
Liu S, Shi L, Cheng Y-b, Fan G-x, Ren H-x, Yuan Y-k. Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigen segments of Toxoplasma gondii in mice. Parasitol.Res 2009;105(1):267.
https://doi.org/10.1007/s00436-009-1393-1
PMid:19288132
Hajissa K, Zakaria R, Suppian R, Mohamed Z. Immunogenicity of Multiepitope Vaccine Candidate against Toxoplasma gondii Infection in BALB/c Mice. Iran J PARASITOL. 2018;13(2):215.
Refbacks
- There are currently no refbacks.