Cover Image

The Optimal Cut-off Score of the Nijmegen Questionnaire for Diagnosing Hyperventilation Syndrome Using a Bayesian Model in the Absence of a Gold Standard

Mehdi Azizmohammad Looha, Fatemeh Masaebi, Mohsen Abedi, Navid Mohseni, Atefeh Fakharian
Background: The Nijmegen questionnaire is one of the most common tools for diagnosing hyperventilation syndrome (HVS). However, there is no precise cut-off score for differentiating patients with HVS from those without HVS. This study was conducted to evaluate the accuracy of Nijmegen questionnaire for detecting patients with HVS and to provide the best cut-off score for differentiating patients with HVS from normal individuals using a Bayesian model in the absence of a gold standard. Materials and Methods: A total of 490 students from a rehabilitation center in Tehran, Iran, were asked to participate in this case study of HVS from January to August 2018. Results: A total of 215 students (40% male and 60% female) completed the Nijmegen questionnaire. The area under the receiver operating characteristic curve (AUC) was 0.93 (male: 0.95; female: 94) for all of the cut-off scores. The optimal cut-off score of ≥20 could predict HVS with sensitivity of 0.91 (male: 0.99; female: 91) and specificity of 0.92 (male: 96; female: 89). Conclusion: Accurate differentiation of HVS patients from individuals without HVS can be accomplished by estimating the cut-off score of Nijmegen questionnaire based on a non-parametric Bayesian model. [GMJ.2020;9:e1738]
Hyperventilation; Questionnaire; Sensitivity; Specificity

Barker N, Everard ML. Getting to grips with 'dysfunctional breathing'. Paediatr Respir Rev. 2015; 16(1):53-61.

https://doi.org/10.1016/j.prrv.2014.10.001

PMid:25499573

Gardner WN. The pathophysiology of hyperventilation disorders. Chest. 1996; 109(2):516-34.

https://doi.org/10.1378/chest.109.2.516

PMid:8620731

Courtney R, Greenwood KM, Cohen M. Relationships between measures of dysfunctional breathing in a population with concerns about their breathing. J Bodyw Mov Ther. 2011; 15(1):24-34.

https://doi.org/10.1016/j.jbmt.2010.06.004

PMid:21147415

Robson A. Dyspnoea, hyperventilation and functional cough: a guide to which tests help sort them out. Breathe (Sheff). 2017; 13(1):45-50.

https://doi.org/10.1183/20734735.019716

PMid:28289450 PMCid:PMC5343732

Connett GJ, Connett LA, Thomas M. Determining the reasons for poorly controlled asthma in an adolescent. BMJ. 2019; 364:l75.

https://doi.org/10.1136/bmj.l75

PMid:30665959

Hyperventilation: Symptoms C, Treatment, Emergencies. WebMD, 2019. (Accessed October 21, 2019, at https://www.webmd.com/lung/lung-hyperventilation-what-to-do#1-3.)

van Dixhoorn J, Folgering H. The Nijmegen Questionnaire and dysfunctional breathing. ERJ Open Res. 2015; 1(1):00001-2015.

https://doi.org/10.1183/23120541.00001-2015

PMid:27730128 PMCid:PMC5005127

Thomas M, McKinley RK, Freeman E, Foy C. Prevalence of dysfunctional breathing in patients treated for asthma in primary care: cross sectional survey. BMJ. 2001;322(7294):1098-100.

https://doi.org/10.1136/bmj.322.7294.1098

PMid:11337441 PMCid:PMC31263

Grammatopoulou EP, Skordilis EK, Georgoudis G, Haniotou A, Evangelodimou A, Fildissis G et al. Hyperventilation in asthma: a validation study of the Nijmegen Questionnaire--NQ. J Asthma. 2014; 51(8):839-46.

https://doi.org/10.3109/02770903.2014.922190

PMid:24823322

Thomas M, McKinley RK, Freeman E, Foy C, Price D. The prevalence of dysfunctional breathing in adults in the community with and without asthma. Prim Care Respir J. 2005; 14(2):78-82.

https://doi.org/10.1016/j.pcrj.2004.10.007

PMid:16701702 PMCid:PMC6743552

Vidotto LS, Carvalho CRFd, Harvey A, Jones M. Dysfunctional breathing: what do we know? J Bras Pneumol. 2019; 45(1):e20170347-e.

https://doi.org/10.1590/1806-3713/e20170347

PMid:30758427 PMCid:PMC6534396

Depiazzi J, Everard ML. Dysfunctional breathing and reaching one's physiological limit as causes of exercise-induced dyspnoea. Breathe (Sheff). 2016; 12(2):120-9.

https://doi.org/10.1183/20734735.007216

PMid:27408630 PMCid:PMC4933621

Wilson C. Hyperventilation syndrome: diagnosis and reassurance. JPP. 2018; 10(9):370-5.

https://doi.org/10.12968/jpar.2018.10.9.370

Ling DI, Pai M, Schiller I, Dendukuri N. A Bayesian framework for estimating the incremental value of a diagnostic test in the absence of a gold standard. BMC Med Res Methodol. 2014; 14:67.

https://doi.org/10.1186/1471-2288-14-67

PMid:24886359 PMCid:PMC4077291

Joseph L, Gyorkos TW, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol. 1995; 141(3):263-72.

https://doi.org/10.1093/oxfordjournals.aje.a117428

PMid:7840100

Ravanbakhsh M, Nargesi M, Raji H, Haddadzadeh Shoushtari M. Reliability and Validity of the Iranian Version of Nijmegen Questionnaire in Iranians with Asthma. Tanaffos. 2015; 14(2):121-7.

Ladouceur M, Rahme E, Belisle P, Scott AN, Schwartzman K, Joseph L. Modeling continuous diagnostic test data using approximate Dirichlet process distributions. Stat Med. 2011; 30(21):2648-62.

https://doi.org/10.1002/sim.4320

PMid:21786286

Cai T, Moskowitz CS. Semi-parametric estimation of the binormal ROC curve for a continuous diagnostic test. Biostatistics. 2004; 5(4):573-86.

https://doi.org/10.1093/biostatistics/kxh009

PMid:15475420

Brat K, Stastna N, Merta Z, Olson LJ, Johnson BD, Cundrle I, Jr. Cardiopulmonary exercise testing for identification of patients with hyperventilation syndrome. PloS one. 2019; 14(4):e0215997-e.

https://doi.org/10.1371/journal.pone.0215997

PMid:31013331 PMCid:PMC6478351

Pfortmueller CA, Pauchard-Neuwerth SE, Leichtle AB, Fiedler GM, Exadaktylos AK, Lindner G. Primary Hyperventilation in the Emergency Department: A First Overview. PLoS One. 2015; 10(6):e0129562.

https://doi.org/10.1371/journal.pone.0129562

PMid:26110771 PMCid:PMC4482441

Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol. 2014; 43(2):476-93.

https://doi.org/10.1093/ije/dyu038

PMid:24648481 PMCid:PMC3997379

Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. The Lancet. 2019; 394(10194):240-8.

https://doi.org/10.1016/S0140-6736(19)30934-1

de Groot EP, Duiverman EJ, Brand PL. Dysfunctional breathing in children with asthma: a rare but relevant comorbidity. Eur Respir J. 2013; 41(5):1068-73.

https://doi.org/10.1183/09031936.00130212

PMid:23018913

Talaat HS, Moaty AS, Elsayed MA. Arabization of Nijmegen questionnaire and study of the prevalence of hyperventilation in dizzy patients. Hearing Balance Commun. 2019; 17(2):182-8.

https://doi.org/10.1080/21695717.2019.1590989

Stanton AE, Vaughn P, Carter R, Bucknall CE. An observational investigation of dysfunctional breathing and breathing control therapy in a problem asthma clinic. J Asthma. 2008; 45(9):758-65.

https://doi.org/10.1080/02770900802252093

PMid:18972291

Demeter SL, Cordasco EM. Hyperventilation syndrome and asthma. Am J Med. 1986; 81(6):989-94.

https://doi.org/10.1016/0002-9343(86)90393-1

Agache I, Ciobanu C, Paul G, Rogozea L. Dysfunctional breathing phenotype in adults with asthma - incidence and risk factors. Clin Transl Allergy. 2012; 2(1):18.

https://doi.org/10.1186/2045-7022-2-18

PMid:22992302 PMCid:PMC3502326

Refbacks

  • There are currently no refbacks.