Effects of Dimethyl Fumarate on the Karnofsky Performance Status and Serum S100β Level in Newly Glioblastoma Patients: A Randomized, Phase-II, Placebo, Triple Blinded, Controlled Trial

  • Milad Shafizadeh 1. Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
  • Ehsan Jangholi 1. Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran 2. Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
  • Seyed Farzad Maroufi 3. Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Mohsen Rostami 4 Spine Center of Excellence, Yas hospital, Tehran University of Medical Sciences, Tehran, Iran
  • Ahmad Bereimipour 5. Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran 6. Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
  • Shahram Majidi 7. Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
  • Niayesh Mohebbi 8. Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Alireza Khoshnevisan 1. Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
Keywords: Glioblastoma, Kanofsky's Performance Status, Dimethyl Fumarate, S100β, Surgical Brain Injury

Abstract

Background: Glioblastoma (GBM) is the most common primary central nervous system malignancy with a low survival without extra logistics. Currently, there is no definitive chemotherapy among the studied options. This study aims to evaluate the neuroprotective effects of dimethyl fumarate (DMF) on surgical brain injuries in patients treated for GBM. Materials and Methods: This randomized, phase II, placebo, triple-blinded, controlled trial was performed on 36 patients with a diagnosis of GBM. All the patients received DMF (240 mg, three-times per day) or placebo (with the same shape and administration route) one week before surgery. Also, patients in both groups after the operation received standard treatments (radiotherapy plus chemotherapy). In addition, Kanofsky's performance status (KPS) score was evaluated at baseline and one month later. Also, serum S100β was measured 48 hours before and after surgery. Results: There was no significant difference among DMF and control groups with regard to age, gender, and the extent of resections (P˃0.05). The most adverse event in both groups was a headache. Although the serum S100β level was not markedly changed after surgery, the mean KPS in the DMF group was higher than in the control group after surgery. Conclusion: The DMF could be a possible good regime for the treatment of GBM; however, questions are raised regarding its efficacy and application for the addition to standard treatment.[GMJ.2022;11:e1897]

References

Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, et al. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. World Neurosurg. 2017;108:94-100.

https://doi.org/10.1016/j.wneu.2017.08.133

PMid:28867321

Chen B, Chen C, Zhang Y, Xu J. Recent incidence trend of elderly patients with glioblastoma in the United States, 2000-2017. BMC Cancer. 2021;21(1):54.

https://doi.org/10.1186/s12885-020-07778-1

PMid:33430813 PMCid:PMC7802341

Lu VM, Jue TR, McDonald KL, Rovin RA. The Survival Effect of Repeat Surgery at Glioblastoma Recurrence and its Trend: A Systematic Review and Meta-Analysis. World Neurosurg. 2018;115:453-9.e3.

https://doi.org/10.1016/j.wneu.2018.04.016

PMid:29654958

Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7-13.

https://doi.org/10.1016/j.jocn.2018.05.002

PMid:29801989

Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073-113.

https://doi.org/10.1093/neuonc/noaa106

PMid:32328653 PMCid:PMC7594557

Raucher D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr Opin Pharmacol. 2019;47:14-9.

https://doi.org/10.1016/j.coph.2019.01.006

PMid:30776641 PMCid:PMC7288394

Gramatzki D, Roth P, Rushing EJ, Weller J, Andratschke N, Hofer S, et al. Bevacizumab may improve quality of life, but not overall survival in glioblastoma: an epidemiological study. Ann Oncol. 2018;29(6):1431-6.

https://doi.org/10.1093/annonc/mdy106

PMid:29617713

Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355-72.

https://doi.org/10.7150/thno.38147

PMid:31938069 PMCid:PMC6956816

Abbasy Z, Arani HZ, Ale-Ebrahim M, Moodi V, Nematian J, Barati M, Shafaie S, Ansari AM, Hashemi A, Davoodi P, Javidi MA. Simultaneous Treatment with P53 Overexpression and Interferon γ Exerts a Dramatic Increase in Apoptosis Induction of U87 Cells. Galen Med J. 2021;10:e2270.

https://doi.org/10.31661/gmj.v10i0.2270

Ahmadi-Beni R, Najafi A, Savar SM, Mohebbi N, Khoshnevisan A. Role of dimethyl fumarate in the treatment of glioblastoma multiforme: A review article. Iran J Neurol. 2019;18(3):127-33.

https://doi.org/10.18502/ijnl.v18i3.1636

PMid:31749934 PMCid:PMC6858600

Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, et al. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev. 2019;39(5):1923-52.

https://doi.org/10.1002/med.21567

PMid:30756407

Loewe R, Valero T, Kremling S, Pratscher B, Kunstfeld R, Pehamberger H, et al. Dimethylfumarate impairs melanoma growth and metastasis. Cancer Res. 2006;66(24):11888-96.

https://doi.org/10.1158/0008-5472.CAN-06-2397

PMid:17178886

Kastrati I, Siklos MI, Calderon-Gierszal EL, El-Shennawy L, Georgieva G, Thayer EN, et al. Dimethyl Fumarate Inhibits the Nuclear Factor κB Pathway in Breast Cancer Cells by Covalent Modification of p65 Protein. J Biol Chem. 2016;291(7):3639-47.

https://doi.org/10.1074/jbc.M115.679704

PMid:26683377 PMCid:PMC4751401

Han G, Zhou Q. Dimethylfumarate induces cell cycle arrest and apoptosis via regulating intracellular redox systems in HeLa cells. In Vitro Cell Dev Biol Anim. 2016;52(10):1034-41.

https://doi.org/10.1007/s11626-016-0069-2

PMid:27496192

Xie X, Zhao Y, Ma CY, Xu XM, Zhang YQ, Wang CG, et al. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol. 2015;172(15):3929-43.

https://doi.org/10.1111/bph.13184

PMid:25953698 PMCid:PMC4523346

Gu B, DeAngelis LM. Enhanced cytotoxicity of bioreductive antitumor agents with dimethyl fumarate in human glioblastoma cells. Anticancer Drugs. 2005;16(2):167-74.

https://doi.org/10.1097/00001813-200502000-00008

PMid:15655414

Bennett Saidu NE, Bretagne M, Mansuet AL, Just PA, Leroy K, Cerles O, et al. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells. Oncotarget. 2018;9(10):9088-99.

https://doi.org/10.18632/oncotarget.24144

PMid:29507676 PMCid:PMC5823659

Jadhav V, Solaroglu I, Obenaus A, Zhang JH. Neuroprotection against surgically induced brain injury. Surg Neurol. 2007;67(1):15-20.

https://doi.org/10.1016/j.surneu.2006.07.014

PMid:17210286 PMCid:PMC1852449

Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res. 2002;940(1-2):102-4.

https://doi.org/10.1016/S0006-8993(02)02586-6

Guerra WK, Gaab MR, Dietz H, Mueller JU, Piek J, Fritsch MJ. Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg. 1999;90(2):187-96.

https://doi.org/10.3171/jns.1999.90.2.0187

PMid:9950487

Shafer D, Tombes MB, Shrader E, Ryan A, Bandyopadhyay D, Dent P, et al. Phase I trial of dimethyl fumarate, temozolomide, and radiation therapy in glioblastoma. Neurooncol Adv. 2020;2(1):vdz052-vdz.

https://doi.org/10.1093/noajnl/vdz052

PMid:32642720 PMCid:PMC7212848

Shabani M, Taghvaei Javanshir H, Bereimipour A, Ebrahimi Sadrabadi A, Jalili A, Nayernia K. Contradictory Effect of Notch1 and Notch2 on Phosphatase and Tensin Homolog and its Influence on Glioblastoma Angiogenesis. Galen Med J. 2021;10(0):e2091.

https://doi.org/10.31661/gmj.v10i0.2091

Bruder N, Ravussin P. Recovery from anesthesia and post-operative extubation of neurosurgical patients: a review. J Neurosurg Anesthesiol. 1999;11(4):282-93.

https://doi.org/10.1097/00008506-199910000-00009

PMid:10527148

Gerzeny M, Cohen AR. Advances in endoscopic neurosurgery. AORN J. 1998;67(5):957-61, 63-5.

https://doi.org/10.1016/S0001-2092(06)62621-5

Patel CK, Vemaraju R, Glasbey J, Shires J, Northmore T, Zaben M, et al. Trends in peri-operative performance status following resection of high grade glioma and brain metastases: The impact on survival. Clin Neurol Neurosurg. 2018;164:67-71.

https://doi.org/10.1016/j.clineuro.2017.11.016

PMid:29197281

Sacko A, Hou MM, Temgoua M, Alkhafaji A, Marantidou A, Belin C, et al. Evolution of the Karnosky Performance Status throughout life in glioblastoma patients. Neuro Oncol. 2015;122(3):567-73.

https://doi.org/10.1007/s11060-015-1749-6

PMid:25700836

Chambless LB, Kistka HM, Parker SL, Hassam-Malani L, McGirt MJ, Thompson RC. The relative value of post-operative versus preoperative Karnofsky Performance Scale scores as a predictor of survival after surgical resection of glioblastoma multiforme. Neuro Oncol. 2015;121(2):359-64.

https://doi.org/10.1007/s11060-014-1640-x

PMid:25344883

Kowalczuk A, Macdonald RL, Amidei C, Dohrmann G, 3rd, Erickson RK, Hekmatpanah J, et al. Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery. 1997;41(5):1028-36; discussion 36-8.

https://doi.org/10.1097/00006123-199711000-00004

PMid:9361056

Published
2022-05-31
How to Cite
Shafizadeh, M., Jangholi, E., Maroufi, S. F., Rostami, M., Bereimipour, A., Majidi, S., Mohebbi, N., & Khoshnevisan, A. (2022). Effects of Dimethyl Fumarate on the Karnofsky Performance Status and Serum S100β Level in Newly Glioblastoma Patients: A Randomized, Phase-II, Placebo, Triple Blinded, Controlled Trial. Galen Medical Journal, 11, e1897. https://doi.org/10.31661/gmj.v11i.1897