Fe2O3 Magnetic Nanoparticles and Curcumin Improved Sperm Parameters in Rats with Scrotal Hyperthermia

  • Maryam Mollaei 1. Department of Genetics, Faculty of biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Mehrdad Hashemi 2. Department of Genetics, Faculty of Advanced Science and Technology, Islamic Azad University, Tehran, Iran 3. Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran http://orcid.org/0000-0003-0627-6991
  • Elham Siasi 1. Department of Genetics, Faculty of biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Sayeh Jafari Marandi 1. Department of Genetics, Faculty of biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Malihe Entezari 2. Department of Genetics, Faculty of Advanced Science and Technology, Islamic Azad University, Tehran, Iran 3. Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Keywords: Sperms, Rats, Fe2O3, Scrotal Hyperthermia

Abstract

Background: Testicular function depends on temperature, and it has been shown that scrotal hyperthermia causes a sharp decrease in sperm parameters due to oxidative stress. In recent years, the use of natural materials from the plant and nanoparticles has attracted much attention. Therefore, the present study aimed to investigate the effect of curcumin and Fe2O3 nanoparticles on sperm parameters in rats. Materials and Methods: After preparing the rats, they were placed in a hot water bath at 43°C for 30 minutes for six consecutive days. The 48 rats were then divided into eight groups. A concentration of 0.03 mg/kg body weight magnetic Fe2O3 nanoparticles and curcumin at the concentration of 0.02 mg/kg body weight were used. After killing animals, the semen parameters such as viability, concentration, motility, and morphology of sperm were studied. Results: Significant differences were observed in all groups of rats in terms of semen parameters (P<0.001). The results showed a positive effect of curcumin on improving semen parameters in scrotal hyperthermia rats and a negative and toxic effect of Fe2O3 magnetic nanoparticles. However, significant improvement in sperm parameters was observed when Fe2O3 magnetic nanoparticles were given to rats along with curcumin. Conclusion: Curcumin has a positive and significant effect on improving sperm parameters in scrotal hyperthermia conditions. Fe2O3 magnetic nanoparticles, if co-administered with curcumin, can significantly improve sperm parameters. In this regard, green synthesis of nanoparticles and concomitant administration of antioxidants such as curcumin in scrotal hyperthermia conditions is recommended. [GMJ.2021;10:e2014]

References

Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28(4):877-85.

https://doi.org/10.1093/humrep/det020

PMid:23411620

Pelliccione F, Micillo A, Cordeschi G, D'Angeli A, Necozione S, Gandini L, et al. Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia. Fertil. 2011;95(2):641-6.

https://doi.org/10.1016/j.fertnstert.2010.07.1086

PMid:20840880

Takahashi M. Heat stress on reproductive function and fertility in mammals. Reprod Med Biol. 2012;11(1):37-47.

https://doi.org/10.1007/s12522-011-0105-6

PMid:29699104 PMCid:PMC5904646

Mieusset R, Bujan L, Mondinat C, Mansat A, Pontonnier F, Grandjean H. Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertil. 1987;48(6):1006-11.

https://doi.org/10.1016/S0015-0282(16)59600-9

Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod. 2001;65(1):229-39.

https://doi.org/10.1095/biolreprod65.1.229

PMid:11420244

Ruiz-Pesini E, Lapeña AC, Dı́ez C, Álvarez E, Enrı́quez JA, López-Pérez MJ. Seminal quality correlates with mitochondrial functionality. Clin Chim. Acta. 2000;300(1-2):97-105.

https://doi.org/10.1016/S0009-8981(00)00305-3

Jagetia GC. Radioprotection and radiosensitization by curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease: Springer; 2007: 301-20.

https://doi.org/10.1007/978-0-387-46401-5_13

PMid:17569217

Free M, Schluntz G, Jaffe R. Respiratory gas tensions in tissues and fluids of the male rat reproductive tract. Biol Reprod. 1976;14(4):481-8.

https://doi.org/10.1095/biolreprod14.4.481

PMid:6085

Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol. 2004;199(3):316-31.

https://doi.org/10.1016/j.taap.2004.01.018

PMid:15364547

Ahmadi F. Effect of turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broiler fed on diets containing aflatoxin B1. Glob Vet. 2010;5(6):312-7.

Khan RU, Naz S, Javdani M, Nikousefat Z, Selvaggi M, Tufarelli V, et al. The use of turmeric (Curcuma longa) in poultry feed. Poult Sci J. 2012;68(1):97-103.

https://doi.org/10.1017/S0043933912000104

Aktas C, Kanter M, Erboga M, Ozturk S. Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health. 2012;28(2):122-30.

https://doi.org/10.1177/0748233711407242

PMid:21632575

Sudjarwo SA, Giftania Wardani Sudjarwo K. Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Res Pharm Sci. 2017;12(5):381.

https://doi.org/10.4103/1735-5362.213983

PMid:28974976 PMCid:PMC5615868

Sharaf H, Morsy F, Shaffie N, El-Shennawy A. Histological and histochemical study on the protective effect of curcumin on ultraviolet irradiation induced testicular damage in albino rats. J Cytol Histol. 2012;3(6):159-66.

Grynkiewicz G, Ślifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim. Pol. 2012;59(2): 201-12.

https://doi.org/10.18388/abp.2012_2139

PMid:22590694

Tronc E, Ezzir A, Cherkaoui R, Chanéac C, Noguès M, Kachkachi H, et al. Surface-related properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 2000;221(1):63-79.

https://doi.org/10.1016/S0304-8853(00)00369-3

Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv Rev. 2011;63(1-2):24-46.

https://doi.org/10.1016/j.addr.2010.05.006

PMid:20685224

Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today Commun. 2011;14(7-8):330-8.

https://doi.org/10.1016/S1369-7021(11)70163-8

Nasr-Esfahani MH, Aboutorabi R, Esfandiari E, Mardani M. Sperm MTT viability assay: a new method for evaluation of human sperm viability. J. Assist Reprod Genet. 2002;19(10):477-82.

https://doi.org/10.1023/A:1020310503143

PMid:12416652 PMCid:PMC3455683

Paul C, Teng S, Saunders PT. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod. 2009;80(5):913-9.

https://doi.org/10.1095/biolreprod.108.071779

PMid:19144962 PMCid:PMC2709966

Piper JT, Singhal SS, Salameh MS, Torman RT, Awasthi YC, Awasthi S. Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Inz J Biochem. 1998;30(4):445-56.

https://doi.org/10.1016/S1357-2725(98)00015-6

Reddy ACP, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem. 1994;137(1):1-8.

https://doi.org/10.1007/BF00926033

PMid:7845373

Lin C, Shin D-G, Park SG, Chu SB, Gwon LW, Lee J-G, et al. Curcumin dose-dependently improves spermatogenic disorders induced by scrotal heat stress in mice. Food Funct. 2015;6(12):3770-7.

https://doi.org/10.1039/C5FO00726G

PMid:26412282

Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521-31.

https://doi.org/10.1166/jnn.2004.081

PMid:15503438

Chen Y, Xue Z, Zheng D, Xia K, Zhao Y, Liu T, et al. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr Gene Ther. 2003;3(3):273-9.

https://doi.org/10.2174/1566523034578339

PMid:12762484

Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412-9.

https://doi.org/10.1093/toxsci/kfi256

PMid:16014736 PMCid:PMC2911231

Moridian M, Khorsandi L, Talebi A. Morphometric and stereological assessment of the effects of zinc oxide nanoparticles on the mouse testicular tissue. Bratisl Lek. 2015;116(5):321.

https://doi.org/10.4149/BLL_2015_060

PMid:25924642

Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622-7.

https://doi.org/10.1126/science.1114397

PMid:16456071

Duan J, Yu Y, Yu Y, Li Y, Wang J, Geng W, et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine. 2014;9:5131-41.

https://doi.org/10.2147/IJN.S71074

PMid:25395850 PMCid:PMC4227623

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50.

https://doi.org/10.1039/c1gc15386b

Published
2021-12-07
How to Cite
Mollaei, M., Hashemi, M., Siasi, E., Marandi, S. J., & Entezari, M. (2021). Fe2O3 Magnetic Nanoparticles and Curcumin Improved Sperm Parameters in Rats with Scrotal Hyperthermia. Galen Medical Journal, 10, e 2014. https://doi.org/10.31661/gmj.v10i0.2014