Curcumin Along With Fe3O4 Nanoparticles Improved Sperm Parameters In Rats With Testicular Ischemia

  • Shabnam Zarei Moradi 1. Department of Genetics, Faculty of Biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Seyed Abdolhamid Angaji 2. Department of Cell and Molecular Biology, Faculty of Biosciences, Kharazmi University, Tehran, Iran
  • Mitra Salehi 3. Department of Microbiology, Faculty of Biosciences, Islamic Azad University, North Tehran Branch, Tehran Iran
  • Mehrdad Hashemi 4. Department of Genetics, Faculty of Advanced Science and Technology, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran http://orcid.org/0000-0003-0627-6991
Keywords: Male Infertility, Fe3O4 Nanoparticles, Curcumin, Oxidative Stress, Sperm Parameters

Abstract

Background: Ischemic/reperfusion (I/R) in testicular tissue is one reason for the worldwide increase in male infertility. In the present study, we assessed the effects of curcumin and Fe3O4 nanoparticles (NPs) on sperm parameters in rats with I/R damage. Materials and Methods: Forty-eight adult male rats were divided into two groups (n=24 per group): control and torsion/detorsion. The control and torsion/detorsion groups were divided into four subgroups include sham, Fe3O4 NPs, curcumin, and Fe3O4 NPs+curcumin. After the rats were sacrificed, semen was collected from their epididymal tissues to assess sperm viability, motility, concentration, and morphology. Results: Curcumin significantly improved viability, motility, and normal sperm morphology in rats with I/R damage compared to the control group; however, it did not have a significant effect on sperm concentration (P<0.001). Fe3O4 NPs alone decreased all sperm parameters in the control and I/R rats (P<0.001). However, concomitant administration of Fe3O4 nanoparticles with curcumin significantly improved sperm parameters in rats with I/R damage (P<0.001). Conclusion: The increase in all semen parameters in the experimental groups with concomitant use of Fe3O4 NPs plus curcumin indicated that green synthesis of NPs could be recommended for future clinical studies.

References

Rowe PJ, Comhaire FH, Hargreave TB, Mahmoud AM. WHO manual for the standardized investigation and diagnosis of the infertile male: Cambridge university press; 2000.

Ringdahl EN, Teague L. Testicular torsion. Am Fam Physician. 2006;74(10):1739-43.

Sharp VJ, Kieran K, Arlen AM. Testicular torsion: diagnosis, evaluation, and management. Am Fam Physician. 2013;88(12):835-40.

Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(2):1-10.

https://doi.org/10.1071/RD15325

PMid:27062870

Agarwal A, Virk G, Ong C, Du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1-17.

https://doi.org/10.5534/wjmh.2014.32.1.1

PMid:24872947 PMCid:PMC4026229

Ko EY, Sabanegh Jr ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518-27.

https://doi.org/10.1016/j.fertnstert.2014.10.020

PMid:25458618

Kuo J-J, Chang H-H, Tsai T-H, Lee T-Y. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med. 2012;30(3):673-9.

https://doi.org/10.3892/ijmm.2012.1049

PMid:22751848

Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014;20(2):322-30.

https://doi.org/10.1016/j.intimp.2014.03.009

PMid:24675438

Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol. 1995;49(3):163-9.

https://doi.org/10.1016/0378-8741(95)01320-2

Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2).

Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci.. 2001;21(21):8370-7.

https://doi.org/10.1523/JNEUROSCI.21-21-08370.2001

PMid:11606625 PMCid:PMC6762797

Kanitkar M, Gokhale K, Galande S, Bhonde R. Novel role of curcumin in the prevention of cytokine‐induced islet death in vitro and diabetogenesis in vivo. Br J Pharmacol. 2008;155(5):702-13.

https://doi.org/10.1038/bjp.2008.311

PMid:18695642 PMCid:PMC2584917

Ma C, Ma Z, Fu Q, Ma S. Curcumin attenuates allergic airway inflammation by regulation of CD4+ CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia. 2013;87:57-64.

https://doi.org/10.1016/j.fitote.2013.02.014

PMid:23500387

Mei X, Xu D, Xu S, Zheng Y, Xu S. Novel role of Zn (II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers. Chem Biol Interact. 2012;197(1):31-9.

https://doi.org/10.1016/j.cbi.2012.03.006

PMid:22465177

Markides H, Rotherham M, El Haj A. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. Journal of Nanomaterials. 2012;2012.

https://doi.org/10.1155/2012/614094

Nalwa HS. A special issue on reviews in nanomedicine, drug delivery and vaccine development. J Biomed Nanotechnol. 2014;10(9):1635-40.

https://doi.org/10.1166/jbn.2014.2033

PMid:25992435

Sharifdini H, Parivar K, Hayati Rodbari N. Study of the effect of iron oxide nanoparticles on mouse testis development during the embryonic period in NMRI strain. Nova Biologica Reperta. 2017;4(3):215-25.

Yamashita K, Yoshioka Y. Safety assessment of nanomaterials in reproductive developmental field. Yakugaku Zasshi. 2012;132(3):331-5.

https://doi.org/10.1248/yakushi.132.331

PMid:22382838

Sonaje K, Italia J, Sharma G, Bhardwaj V, Tikoo K, Kumar MR. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm Res. 2007;24(5):899-908.

https://doi.org/10.1007/s11095-006-9207-y

PMid:17377747

Carden DL,Granger DN. Pathophysiology of ischemia-reperfusion injury. J Pathol. 2000; 190(3):255-66.

https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6

Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci. 2004;49(9):1359-77.

https://doi.org/10.1023/B:DDAS.0000042232.98927.91

PMid:15481305

Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255-66.

https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6

Power RE, Scanlon R, Kay EW, Creagh TA, Bouchier‐Hayes DJ. Long‐term protective effects of hypothermia on reperfusion injury post‐testicular torsion. Scand J Urol Nephrol. 2003;37(6):456-60.

https://doi.org/10.1080/00365590310014508

PMid:14675916

Paller MS, Hoidal J, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984;74(4):1156-64.

https://doi.org/10.1172/JCI111524

PMid:6434591 PMCid:PMC425281

Fellström B, Aküyrek L, Backman U, Larsson E, Melin J, editors. Postischemic reperfusion injury and allograft arteriosclerosis Transplant Proc. 1998;30(8):4278-80.

https://doi.org/10.1016/S0041-1345(98)01412-2

Oldenburg O, Qin Q, Krieg T, Yang X-M, Philipp S, Critz SD, et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol. 2004;286(1):H468-H76.

https://doi.org/10.1152/ajpheart.00360.2003

PMid:12958031

Seth P, Kumari R, Madhavan S, Singh AK, Mani H, Banaudha KK, et al. Prevention of renal ischemia-reperfusion-induced injury in rats by picroliv. Biochem Pharmacol. 2000;59(10):1315-22.

https://doi.org/10.1016/S0006-2952(00)00268-9

Unal D, Yeni E, Erel O, Bitiren M, Vural H. Antioxidative effects of exogenous nitric oxide versus antioxidant vitamins on renal ischemia reperfusion injury. Urol Res. 2002;30(3):190-4.

https://doi.org/10.1007/s00240-002-0254-5

PMid:12111183

Ishihara M, Itoh M, Miyamoto K, Suna S, Takeuchi Y, Takenaka I, et al. Spermatogenic disturbance induced by di‐(2‐ethylhexyl) phthalate is significantly prevented by treatment with antioxidant vitamins in the rat. Int J Androl. 2000;23(2):85-94.

https://doi.org/10.1046/j.1365-2605.2000.00212.x

PMid:10762434

Bayrak O, Uz E, Bayrak R, Turgut F, Atmaca AF, Sahin S, et al. Curcumin protects against ischemia/reperfusion injury in rat kidneys. World J Urol. 2008;26(3):285-91.

https://doi.org/10.1007/s00345-008-0253-4

PMid:18373094

Mahood IK, Hallmark N, McKinnell C, Walker M, Fisher JS, Sharpe RM. Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di (n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology. 2005;146(2):613-23.

https://doi.org/10.1210/en.2004-0671

PMid:15539561

Hsieh JC, Sun M, editors. Evidence on the Carcinogenicity of Butyl Benzyl Phthalate (BBP). Meeting of the Carcinogen Identification Committee; 2013: Citeseer.

Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure Environ Health Perspect. 2005;113(8):1056-61.

https://doi.org/10.1289/ehp.8100

PMid:16079079 PMCid:PMC1280349

Sun W, Lu Y, Mao J, Chang N, Yang J, Liu Y. Multidimensional sensor for pattern recognition of proteins based on DNA-gold nanoparticles conjugates. Anal Chem. 2015;87(6):3354-9.

https://doi.org/10.1021/ac504587h

PMid:25673351

Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6-7):437-45.

https://doi.org/10.1080/08958370490439597

PMid:15204759

Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol. 2009;6(1):1-14.

https://doi.org/10.1186/1743-8977-6-1

PMid:19134195 PMCid:PMC2632982

Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G, et al. Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett. 2012;214(3):251-8.

https://doi.org/10.1016/j.toxlet.2012.08.028

PMid:22982066

Lafuente D, Garcia T, Blanco J, Sánchez D, Sirvent J, Domingo J, et al. Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod Toxicol. 2016;60:133-9.

https://doi.org/10.1016/j.reprotox.2016.02.007

PMid:26900051

Adebayo O, Akinloye O, Adaramoye O. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia. 2018;50(3):e12920.

https://doi.org/10.1111/and.12920

PMid:29164652

Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol. 2010;5(9):683.

https://doi.org/10.1038/nnano.2010.153

PMid:20693989 PMCid:PMC2934866

Duan J, Yu Y, Yu Y, Li Y, Wang J, Geng W, et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine. 2014;9:5131-41.

https://doi.org/10.2147/IJN.S71074

PMid:25395850 PMCid:PMC4227623

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011;13(10):2638-50.

https://doi.org/10.1039/c1gc15386b

Published
2021-12-31
How to Cite
Zarei Moradi , S., Angaji, S. A., Salehi, M., & Hashemi, M. (2021). Curcumin Along With Fe3O4 Nanoparticles Improved Sperm Parameters In Rats With Testicular Ischemia. Galen Medical Journal, 10, e2034. https://doi.org/10.31661/gmj.v10i0.2034