Experimental and Bioinformatic Clues to the Potential Roles of hsa_circ_0013958 and hsa_circ_0003028 in Clinopathophysiology of Breast Cancer
Abstract
Background: Circular RNAs (circRNAs), covalently closed single-stranded non-coding RNAs (ncRNAs), play pivotal roles in development and progression of breast cancer (BC). Although the roles of hsa_circ_0013958 and hsa_circ_0003028 in some malignancies have been explored, their function and expression in breast tumors are still unknown. This study was aimed to bioinformatically and experimentally evaluates the expression and potential function of hsa_circ_0013958 and hsa_circ_0003028 in BC. Materials and Methods: The quantitative real-time PCR method was used to determine the expression of hsa_circ_0013958 and hsa_circ_0003028 in 50 tumor samples and matched adjacent non-cancerous tissues. Besides, we used bioinformatic approaches to identify potentially important competing endogenous RNA (ceRNA) networks that are regulated by these circRNAs using some databases and software tools. Results: The hsa_circ_0013958 was significantly down-regulated in breast tumors compared with adjacent normal tissues, while the hsa_circ_0003028 had an upregulated pattern. Interestingly, it is found the higher expression of hsa_circ_0013958 showed association with a lack of use of hair dye as well as age at menarche ≥14 years in subjects. On the other hand, hsa_circ_0003028 expression was meaningfully related to age at first full-term pregnancy, antiperspirants use, and regular menstruation. Next, we found that these two circRNAs can potentially regulate some circRNAs-mediated miRNA sponge regulatory networks. Conclusion: The current work indicated that the hsa_circ_0013958 and hsa_circ_0003028 had reverse expression patterns in breast tumors, and it seems that they play key roles in the physiopathology of this cancer through potential key regulatory ceRNA functions. However, further functional studies are needed to validate these bioinformatically observed roles. [GMJ.2021;10:e2064]References
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.
https://doi.org/10.3322/caac.21551
PMid:30620402
Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74.
https://doi.org/10.1038/nature11247
PMid:22955616 PMCid:PMC3439153
Al-Mansouri LJ, Alokail MS. Molecular basis of breast cancer. Saudi Med. 2006;27(1):9.
Piao H-l, Ma L. Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol. 2012;17(1):33-42.
https://doi.org/10.1007/s10911-012-9245-5
PMid:22350981 PMCid:PMC3686545
Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9(6):e1003569.
https://doi.org/10.1371/journal.pgen.1003569
PMid:23818866 PMCid:PMC3688513
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55-66.
https://doi.org/10.1016/j.molcel.2014.08.019
PMid:25242144
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63-e.
https://doi.org/10.1093/nar/gkl151
PMid:16682442 PMCid:PMC1458517
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31-44.
https://doi.org/10.1016/j.pharmthera.2018.01.010
PMid:29406246
Wu J, Qi X, Liu L, Hu X, Liu J, Yang J et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids. 2019;16:589-96.
https://doi.org/10.1016/j.omtn.2019.04.011
PMid:31082792 PMCid:PMC6517616
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-8.
https://doi.org/10.1038/nature11993
PMid:23446346
Wang X, Fang L. Advances in circular RNAs and their roles in breast Cancer. J Exp Clin Cancer Res. 2018;37(1):206.
https://doi.org/10.1186/s13046-018-0870-8
PMid:30157902 PMCid:PMC6116371
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. Rna. 2014;20(11):1666-70.
https://doi.org/10.1261/rna.043687.113
PMid:25234927 PMCid:PMC4201819
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170-82.
https://doi.org/10.1111/febs.14132
PMid:28685964
Pei C, Wang H, Shi C, Zhang C, Wang M. CircRNA hsa_circ_0013958 may contribute to the development of ovarian cancer by affecting epithelial mesenchymal transition and apoptotic signaling pathways. J Clin Lab Anal. 2020:e23292.
https://doi.org/10.1002/jcla.23292
He Q, Yan D, Dong W, Bi J, Huang L, Yang M et al. circRNA circFUT8 upregulates Krüpple-like factor 10 to inhibit the metastasis of bladder Cancer via sponging miR-570-3p. Mol Ther Oncolytics. 2020;16:172-87.
https://doi.org/10.1016/j.omto.2019.12.014
PMid:32072011 PMCid:PMC7013148
Li S, Gu H, Huang Y, Peng Q, Zhou R, Yi P et al. Circular RNA 101368/miR-200a axis modulates the migration of hepatocellular carcinoma through HMGB1/RAGE signaling. Cell Cycle. 2018;17(19-20):2349-59.
https://doi.org/10.1080/15384101.2018.1526599
PMid:30265210 PMCid:PMC6237437
Chen L. Exploring the Role of Circulating MIR-134 In Breast Cancer Recurrence. 2019.
Ahlin C, Lundgren C, Embretsén-Varro E, Jirström K, Blomqvist C, Fjällskog M-L. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers. Breast Cancer Res Treat. 2017;164(3):667-78.
https://doi.org/10.1007/s10549-017-4294-5
PMid:28528450 PMCid:PMC5495873
Wang LL, Huang WW, Huang J, Huang RF, Li NN, Hong Y et al. Protective effect of hsa miR 570 3p targeting CD274 on triple negative breast cancer by blocking PI3K/AKT/mTOR signaling pathway. KAOHSIUNG J MED SCI. 2020.
Sun S, Zhang W, Cui Z, Chen Q, Xie P, Zhou C et al. High mobility group box-1 and its clinical value in breast cancer. Onco Targets Ther. 2015;8:413.
https://doi.org/10.2147/OTT.S73366
PMid:25709474 PMCid:PMC4334343
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: a new look at hallmarks of breast cancer. J Cell Physiol. 2019;234(7):10080-100.
https://doi.org/10.1002/jcp.27941
PMid:30537129
Lambert M, Jambon S, Depauw S, David-Cordonnier M-H. Targeting transcription factors for cancer treatment. Molecules. 2018;23(6):1479.
https://doi.org/10.3390/molecules23061479
PMid:29921764 PMCid:PMC6100431
Orlandella FM, Mariniello RM, Mirabelli P, De Stefano AE, Iervolino PLC, Lasorsa VA et al. miR-622 is a novel potential biomarker of breast carcinoma and impairs motility of breast cancer cells through targeting NUAK1 kinase. Br J Cancer. 2020:1-12.
https://doi.org/10.1038/s41416-020-0884-9
PMid:32418991 PMCid:PMC7403386
Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M et al. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep. 2017;7:44244.
https://doi.org/10.1038/srep44244
PMid:28287129 PMCid:PMC5347151
Leivonen S-K, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale A-L et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol. 2014;8(1):93-104.
https://doi.org/10.1016/j.molonc.2013.10.001
PMid:24148764 PMCid:PMC5528509
Zhang Y, Liu J, Wang J. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis. Eur Rev Med Pharmacol Sci. 2020;24(6):3085-96.
Wang W, Hind T, Lam BWS, Herr DR. Sphingosine 1-phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells. FASEB J. 2019;33(6):7180-91.
https://doi.org/10.1096/fj.201801635R
PMid:30844311
Tang Y-Y, Zhao P, Zou T-N, Duan J-J, Zhi R, Yang S-Y et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 2017;36(11):901-8.
https://doi.org/10.1089/dna.2017.3862
PMid:28933584
Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis. 2018;39(9):1185-96.
https://doi.org/10.1093/carcin/bgy092
PMid:29985991 PMCid:PMC6148990
Pan Y, Jiao G, Wang C, Yang J, Yang W. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1. Biomed Pharmacother. 2016;83:1398-406.
https://doi.org/10.1016/j.biopha.2016.08.058
PMid:27583980
Parsa P, Parsa B. Effects of Reproductive Factors on Risk of Breast Cancer: A. Asian Pac J Cancer Prev. 2009;10:545-50.
Henderson BE, Ross RK, Judd HL, Krailo MD, Pike MC. Do regular ovulatory cycles increase breast cancer risk? Cancer. 1985;56(5):1206-8.
https://doi.org/10.1002/1097-0142(19850901)56:5<1206::AID-CNCR2820560541>3.0.CO;2-9
Clavel-Chapelon F. Cumulative number of menstrual cycles and breast cancer risk: results from the E3N cohort study of French women. Cancer Causes Control. 2002;13(9):831-8.
https://doi.org/10.1023/A:1020684821837
PMid:12462548 PMCid:PMC2001234
Mansoori Y, Tabei MB, Askari A, Izadi P, Daraei A, Bastami M et al. Expression levels of breast cancer related GAS 5 and LSINCT 5 lnc RNA s in cancer free breast tissue: Molecular associations with age at menarche and obesity. Breast J. 2018;24(6):876-82.
https://doi.org/10.1111/tbj.13067
PMid:29785740
Henderson BE, Feigelson HS. Hormonal carcinogenesis. Carcinogenesis. 2000;21(3):427-33.
https://doi.org/10.1093/carcin/21.3.427
PMid:10688862
Mansoori Y, Zendehbad Z, Askari A, Kouhpayeh A, Tavakkoly Bazzaz J, Nariman Saleh Fam Z et al. Breast cancer linked lncRNA u Eleanor is upregulated in breast of healthy women with lack or short duration of breastfeeding. J Cell Biochem. 2019;120(6):9869-76.
https://doi.org/10.1002/jcb.28269
PMid:30548300
Tamakoshi K, Yatsuya H, Wakai K, Suzuki S, Nishio K, Lin Y et al. Impact of menstrual and reproductive factors on breast cancer risk in Japan: results of the JACC study. Cancer Sci. 2005;96(1):57-62.
https://doi.org/10.1111/j.1349-7006.2005.00010.x
PMid:15649257
Russo J, Moral R, Balogh GA, Mailo D, Russo IH. The protective role of pregnancy in breast cancer. Breast Cancer Res. 2005;7(3):131.
https://doi.org/10.1186/bcr1029
PMid:15987443 PMCid:PMC1143568
Abdollahzadeh R, Mansoori Y, Azarnezhad A, Daraei A, Paknahad S, Mehrabi S et al. Expression and clinicopathological significance of AOC4P, PRNCR1, and PCAT1 lncRNAs in breast cancer. Pathol Res Pract. 2020;216(10):153131.
https://doi.org/10.1016/j.prp.2020.153131
PMid:32853955
Quan G, Li J. Circular RNAs: biogenesis, expression and their potential roles in reproduction. J Ovarian Res. 2018;11(1):9.
https://doi.org/10.1186/s13048-018-0381-4
PMid:29343298 PMCid:PMC5773157
Zhang C, Liu J, Lai M, Li J, Zhan J, Wen Q et al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome. Arch Gynecol Obstet. 2019;300(2):431-40.
https://doi.org/10.1007/s00404-019-05129-5
PMid:30937532 PMCid:PMC6592967
Cheng J, Huang J, Yuan S, Zhou S, Yan W, Shen W et al. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS One. 2017;12(6):e0177888.
https://doi.org/10.1371/journal.pone.0177888
PMid:28644873 PMCid:PMC5482436
Stiel L, Adkins Jackson PB, Clark P, Mitchell E, Montgomery S. A review of hair product use on breast cancer risk in African American women. Cancer Med. 2016;5(3):597-604.
https://doi.org/10.1002/cam4.613
PMid:26773423 PMCid:PMC4799949
Turesky RJ, Freeman JP, Holland RD, Nestorick DM, Miller DW, Ratnasinghe DL et al. Identification of aminobiphenyl derivatives in commercial hair dyes. Chem Res Toxicol. 2003;16(9):1162-73.
https://doi.org/10.1021/tx030029r
PMid:12971805
Hamblen EL, Cronin MT, Schultz TW. Estrogenicity and acute toxicity of selected anilines using a recombinant yeast assay. Chemosphere. 2003;52(7):1173-81.
https://doi.org/10.1016/S0045-6535(03)00333-3
Bergman Å, Heindel JJ, Jobling S, Kidd K, Zoeller TR, Organization WH. State of the science of endocrine disrupting chemicals 2012. World Health Organization; 2013.
https://doi.org/10.1016/j.toxlet.2012.03.020
Knower KC, To SQ, Leung Y-K, Ho S-M, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21(2):T33.
https://doi.org/10.1530/ERC-13-0513
PMid:24532474 PMCid:PMC4504013
Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342.
https://doi.org/10.1210/er.2009-0002
PMid:19502515 PMCid:PMC2726844
Teng Y, Manavalan TT, Hu C, Medjakovic S, Jungbauer A, Klinge CM. Endocrine disruptors fludioxonil and fenhexamid stimulate miR-21 expression in breast cancer cells. Toxicol Sci. 2013;131(1):71-83.
https://doi.org/10.1093/toxsci/kfs290
PMid:23052036 PMCid:PMC3537134
Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol. 2014;141:160-70.
https://doi.org/10.1016/j.jsbmb.2014.02.002
PMid:24533973 PMCid:PMC4025971
Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005;99(9):1912-9.
https://doi.org/10.1016/j.jinorgbio.2005.06.001
PMid:16045991
Miller WR. Estrogen and breast cancer. Chapman & Hall; 1996.
Pineau A, Fauconneau B, Sappino A-P, Deloncle R, Guillard O. If exposure to aluminium in antiperspirants presents health risks, its content should be reduced. J Trace Elem Med Biol. 2014;28(2):147-50.
https://doi.org/10.1016/j.jtemb.2013.12.002
PMid:24418462
Exley C. Aluminium and Alzheimer's Disease: The science that describes the link. Elsevier; 2001.

Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).