Experimental and Bioinformatic Clues to the Potential Roles of hsa_circ_0013958 and hsa_circ_0003028 in Clinopathophysiology of Breast Cancer

  • Zahra Firoozi 1. Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran http://orcid.org/0000-0002-8103-2244
  • Yaser Mansoori 2. Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran 3. Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
  • Kolsoum Saeidi 4. Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran http://orcid.org/0000-0003-1256-0323
  • Elham Mohammadi Soleimani 5. Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
  • Abdolreza Daraei 6. Department of Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
  • Mohammad Mehdi Naghizadeh 2. Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
  • Nasrollah Saleh-Gohari 1. Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
Keywords: Breast Cancer; hsa_circ_0013958; hsa_circ_0003028; ceRNA; circRNAs

Abstract

Background: Circular RNAs (circRNAs), covalently closed single-stranded non-coding RNAs (ncRNAs), play pivotal roles in development and progression of breast cancer (BC). Although the roles of hsa_circ_0013958 and hsa_circ_0003028 in some malignancies have been explored, their function and expression in breast tumors are still unknown. This study was aimed to bioinformatically and experimentally evaluates the expression and potential function of hsa_circ_0013958 and hsa_circ_0003028 in BC. Materials and Methods: The quantitative real-time PCR method was used to determine the expression of hsa_circ_0013958 and hsa_circ_0003028 in 50 tumor samples and matched adjacent non-cancerous tissues. Besides, we used bioinformatic approaches to identify potentially important competing endogenous RNA (ceRNA) networks that are regulated by these circRNAs using some databases and software tools. Results: The hsa_circ_0013958 was significantly down-regulated in breast tumors compared with adjacent normal tissues, while the hsa_circ_0003028 had an upregulated pattern. Interestingly, it is found the higher expression of hsa_circ_0013958 showed association with a lack of use of hair dye as well as age at menarche ≥14 years in subjects. On the other hand, hsa_circ_0003028 expression was meaningfully related to age at first full-term pregnancy, antiperspirants use, and regular menstruation. Next, we found that these two circRNAs can potentially regulate some circRNAs-mediated miRNA sponge regulatory networks. Conclusion: The current work indicated that the hsa_circ_0013958 and hsa_circ_0003028 had reverse expression patterns in breast tumors, and it seems that they play key roles in the physiopathology of this cancer through potential key regulatory ceRNA functions. However, further functional studies are needed to validate these bioinformatically observed roles. [GMJ.2021;10:e2064]

References

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.

https://doi.org/10.3322/caac.21551

PMid:30620402

Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74.

https://doi.org/10.1038/nature11247

PMid:22955616 PMCid:PMC3439153

Al-Mansouri LJ, Alokail MS. Molecular basis of breast cancer. Saudi Med. 2006;27(1):9.

Piao H-l, Ma L. Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol. 2012;17(1):33-42.

https://doi.org/10.1007/s10911-012-9245-5

PMid:22350981 PMCid:PMC3686545

Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9(6):e1003569.

https://doi.org/10.1371/journal.pgen.1003569

PMid:23818866 PMCid:PMC3688513

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55-66.

https://doi.org/10.1016/j.molcel.2014.08.019

PMid:25242144

Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63-e.

https://doi.org/10.1093/nar/gkl151

PMid:16682442 PMCid:PMC1458517

Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31-44.

https://doi.org/10.1016/j.pharmthera.2018.01.010

PMid:29406246

Wu J, Qi X, Liu L, Hu X, Liu J, Yang J et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids. 2019;16:589-96.

https://doi.org/10.1016/j.omtn.2019.04.011

PMid:31082792 PMCid:PMC6517616

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-8.

https://doi.org/10.1038/nature11993

PMid:23446346

Wang X, Fang L. Advances in circular RNAs and their roles in breast Cancer. J Exp Clin Cancer Res. 2018;37(1):206.

https://doi.org/10.1186/s13046-018-0870-8

PMid:30157902 PMCid:PMC6116371

Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. Rna. 2014;20(11):1666-70.

https://doi.org/10.1261/rna.043687.113

PMid:25234927 PMCid:PMC4201819

Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170-82.

https://doi.org/10.1111/febs.14132

PMid:28685964

Pei C, Wang H, Shi C, Zhang C, Wang M. CircRNA hsa_circ_0013958 may contribute to the development of ovarian cancer by affecting epithelial mesenchymal transition and apoptotic signaling pathways. J Clin Lab Anal. 2020:e23292.

https://doi.org/10.1002/jcla.23292

He Q, Yan D, Dong W, Bi J, Huang L, Yang M et al. circRNA circFUT8 upregulates Krüpple-like factor 10 to inhibit the metastasis of bladder Cancer via sponging miR-570-3p. Mol Ther Oncolytics. 2020;16:172-87.

https://doi.org/10.1016/j.omto.2019.12.014

PMid:32072011 PMCid:PMC7013148

Li S, Gu H, Huang Y, Peng Q, Zhou R, Yi P et al. Circular RNA 101368/miR-200a axis modulates the migration of hepatocellular carcinoma through HMGB1/RAGE signaling. Cell Cycle. 2018;17(19-20):2349-59.

https://doi.org/10.1080/15384101.2018.1526599

PMid:30265210 PMCid:PMC6237437

Chen L. Exploring the Role of Circulating MIR-134 In Breast Cancer Recurrence. 2019.

Ahlin C, Lundgren C, Embretsén-Varro E, Jirström K, Blomqvist C, Fjällskog M-L. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers. Breast Cancer Res Treat. 2017;164(3):667-78.

https://doi.org/10.1007/s10549-017-4294-5

PMid:28528450 PMCid:PMC5495873

Wang LL, Huang WW, Huang J, Huang RF, Li NN, Hong Y et al. Protective effect of hsa miR 570 3p targeting CD274 on triple negative breast cancer by blocking PI3K/AKT/mTOR signaling pathway. KAOHSIUNG J MED SCI. 2020.

Sun S, Zhang W, Cui Z, Chen Q, Xie P, Zhou C et al. High mobility group box-1 and its clinical value in breast cancer. Onco Targets Ther. 2015;8:413.

https://doi.org/10.2147/OTT.S73366

PMid:25709474 PMCid:PMC4334343

Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: a new look at hallmarks of breast cancer. J Cell Physiol. 2019;234(7):10080-100.

https://doi.org/10.1002/jcp.27941

PMid:30537129

Lambert M, Jambon S, Depauw S, David-Cordonnier M-H. Targeting transcription factors for cancer treatment. Molecules. 2018;23(6):1479.

https://doi.org/10.3390/molecules23061479

PMid:29921764 PMCid:PMC6100431

Orlandella FM, Mariniello RM, Mirabelli P, De Stefano AE, Iervolino PLC, Lasorsa VA et al. miR-622 is a novel potential biomarker of breast carcinoma and impairs motility of breast cancer cells through targeting NUAK1 kinase. Br J Cancer. 2020:1-12.

https://doi.org/10.1038/s41416-020-0884-9

PMid:32418991 PMCid:PMC7403386

Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M et al. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep. 2017;7:44244.

https://doi.org/10.1038/srep44244

PMid:28287129 PMCid:PMC5347151

Leivonen S-K, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale A-L et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol. 2014;8(1):93-104.

https://doi.org/10.1016/j.molonc.2013.10.001

PMid:24148764 PMCid:PMC5528509

Zhang Y, Liu J, Wang J. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis. Eur Rev Med Pharmacol Sci. 2020;24(6):3085-96.

Wang W, Hind T, Lam BWS, Herr DR. Sphingosine 1-phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells. FASEB J. 2019;33(6):7180-91.

https://doi.org/10.1096/fj.201801635R

PMid:30844311

Tang Y-Y, Zhao P, Zou T-N, Duan J-J, Zhi R, Yang S-Y et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 2017;36(11):901-8.

https://doi.org/10.1089/dna.2017.3862

PMid:28933584

Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis. 2018;39(9):1185-96.

https://doi.org/10.1093/carcin/bgy092

PMid:29985991 PMCid:PMC6148990

Pan Y, Jiao G, Wang C, Yang J, Yang W. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1. Biomed Pharmacother. 2016;83:1398-406.

https://doi.org/10.1016/j.biopha.2016.08.058

PMid:27583980

Parsa P, Parsa B. Effects of Reproductive Factors on Risk of Breast Cancer: A. Asian Pac J Cancer Prev. 2009;10:545-50.

Henderson BE, Ross RK, Judd HL, Krailo MD, Pike MC. Do regular ovulatory cycles increase breast cancer risk? Cancer. 1985;56(5):1206-8.

https://doi.org/10.1002/1097-0142(19850901)56:5<1206::AID-CNCR2820560541>3.0.CO;2-9

Clavel-Chapelon F. Cumulative number of menstrual cycles and breast cancer risk: results from the E3N cohort study of French women. Cancer Causes Control. 2002;13(9):831-8.

https://doi.org/10.1023/A:1020684821837

PMid:12462548 PMCid:PMC2001234

Mansoori Y, Tabei MB, Askari A, Izadi P, Daraei A, Bastami M et al. Expression levels of breast cancer related GAS 5 and LSINCT 5 lnc RNA s in cancer free breast tissue: Molecular associations with age at menarche and obesity. Breast J. 2018;24(6):876-82.

https://doi.org/10.1111/tbj.13067

PMid:29785740

Henderson BE, Feigelson HS. Hormonal carcinogenesis. Carcinogenesis. 2000;21(3):427-33.

https://doi.org/10.1093/carcin/21.3.427

PMid:10688862

Mansoori Y, Zendehbad Z, Askari A, Kouhpayeh A, Tavakkoly Bazzaz J, Nariman Saleh Fam Z et al. Breast cancer linked lncRNA u Eleanor is upregulated in breast of healthy women with lack or short duration of breastfeeding. J Cell Biochem. 2019;120(6):9869-76.

https://doi.org/10.1002/jcb.28269

PMid:30548300

Tamakoshi K, Yatsuya H, Wakai K, Suzuki S, Nishio K, Lin Y et al. Impact of menstrual and reproductive factors on breast cancer risk in Japan: results of the JACC study. Cancer Sci. 2005;96(1):57-62.

https://doi.org/10.1111/j.1349-7006.2005.00010.x

PMid:15649257

Russo J, Moral R, Balogh GA, Mailo D, Russo IH. The protective role of pregnancy in breast cancer. Breast Cancer Res. 2005;7(3):131.

https://doi.org/10.1186/bcr1029

PMid:15987443 PMCid:PMC1143568

Abdollahzadeh R, Mansoori Y, Azarnezhad A, Daraei A, Paknahad S, Mehrabi S et al. Expression and clinicopathological significance of AOC4P, PRNCR1, and PCAT1 lncRNAs in breast cancer. Pathol Res Pract. 2020;216(10):153131.

https://doi.org/10.1016/j.prp.2020.153131

PMid:32853955

Quan G, Li J. Circular RNAs: biogenesis, expression and their potential roles in reproduction. J Ovarian Res. 2018;11(1):9.

https://doi.org/10.1186/s13048-018-0381-4

PMid:29343298 PMCid:PMC5773157

Zhang C, Liu J, Lai M, Li J, Zhan J, Wen Q et al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome. Arch Gynecol Obstet. 2019;300(2):431-40.

https://doi.org/10.1007/s00404-019-05129-5

PMid:30937532 PMCid:PMC6592967

Cheng J, Huang J, Yuan S, Zhou S, Yan W, Shen W et al. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS One. 2017;12(6):e0177888.

https://doi.org/10.1371/journal.pone.0177888

PMid:28644873 PMCid:PMC5482436

Stiel L, Adkins Jackson PB, Clark P, Mitchell E, Montgomery S. A review of hair product use on breast cancer risk in African American women. Cancer Med. 2016;5(3):597-604.

https://doi.org/10.1002/cam4.613

PMid:26773423 PMCid:PMC4799949

Turesky RJ, Freeman JP, Holland RD, Nestorick DM, Miller DW, Ratnasinghe DL et al. Identification of aminobiphenyl derivatives in commercial hair dyes. Chem Res Toxicol. 2003;16(9):1162-73.

https://doi.org/10.1021/tx030029r

PMid:12971805

Hamblen EL, Cronin MT, Schultz TW. Estrogenicity and acute toxicity of selected anilines using a recombinant yeast assay. Chemosphere. 2003;52(7):1173-81.

https://doi.org/10.1016/S0045-6535(03)00333-3

Bergman Å, Heindel JJ, Jobling S, Kidd K, Zoeller TR, Organization WH. State of the science of endocrine disrupting chemicals 2012. World Health Organization; 2013.

https://doi.org/10.1016/j.toxlet.2012.03.020

Knower KC, To SQ, Leung Y-K, Ho S-M, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21(2):T33.

https://doi.org/10.1530/ERC-13-0513

PMid:24532474 PMCid:PMC4504013

Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342.

https://doi.org/10.1210/er.2009-0002

PMid:19502515 PMCid:PMC2726844

Teng Y, Manavalan TT, Hu C, Medjakovic S, Jungbauer A, Klinge CM. Endocrine disruptors fludioxonil and fenhexamid stimulate miR-21 expression in breast cancer cells. Toxicol Sci. 2013;131(1):71-83.

https://doi.org/10.1093/toxsci/kfs290

PMid:23052036 PMCid:PMC3537134

Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol. 2014;141:160-70.

https://doi.org/10.1016/j.jsbmb.2014.02.002

PMid:24533973 PMCid:PMC4025971

Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005;99(9):1912-9.

https://doi.org/10.1016/j.jinorgbio.2005.06.001

PMid:16045991

Miller WR. Estrogen and breast cancer. Chapman & Hall; 1996.

Pineau A, Fauconneau B, Sappino A-P, Deloncle R, Guillard O. If exposure to aluminium in antiperspirants presents health risks, its content should be reduced. J Trace Elem Med Biol. 2014;28(2):147-50.

https://doi.org/10.1016/j.jtemb.2013.12.002

PMid:24418462

Exley C. Aluminium and Alzheimer's Disease: The science that describes the link. Elsevier; 2001.

Published
2021-07-28
How to Cite
Firoozi, Z., Mansoori, Y., Saeidi, K., Mohammadi Soleimani, E., Daraei, A., Naghizadeh, M. M., & Saleh-Gohari, N. (2021). Experimental and Bioinformatic Clues to the Potential Roles of hsa_circ_0013958 and hsa_circ_0003028 in Clinopathophysiology of Breast Cancer. Galen Medical Journal, 10, e2064. https://doi.org/10.31661/gmj.v10i0.2064