Molecular Mechanisms of Vitamin D-Mediated Immunomodulation
Abstract
Ever since discovering the fat-soluble secosteroid vitamin D, an abundance of research has been conducted on the molecular mechanisms for the multiple health benefits of this nutrient. Studies on the beneficial effects of vitamin D supplementation have found appreciable evidence suggesting that it may play a more prime role than initially presumed. Though it has largely been implicated in bone pathophysiology, novel research on vitamin D indicates its fundamental involvement in a wide range of disease processes through its multiple systemic effects, including but not limited to metabolic, cardiovascular, anti-inflammatory, antineoplastic, antioxidant, neuroprotective, and immune actions. Recent work has yielded important mechanistic insights into the functions of vitamin D in mediating immunity. The present work sheds light on the metabolism and immune response mechanisms of vitamin D. Current review is based on a thorough search of the available relevant research findings of the metabolic transformations of vitamin D and the molecular basis of its role in immunity. Apart from its classical mechanistic control of mineral homeostasis, vitamin D has immunomodulatory effects through various mechanisms at both systemic and cellular levels. Disruption of vitamin D reliant molecular pathways in the regulation of immune response can potentially result in the development and/or progression of autoimmune and infective processes. [GMJ.2021;10:e2097]References
Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S-9S.
https://doi.org/10.1093/ajcn/88.2.491S
PMid:18689389
Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123-33.
https://doi.org/10.1016/j.abb.2012.04.001
PMid:22503810
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-29.
https://doi.org/10.1016/j.chembiol.2013.12.016
PMid:24529992 PMCid:PMC3968073
Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19(2):73-8.
https://doi.org/10.1016/j.annepidem.2007.12.001
PMid:18329892 PMCid:PMC2665033
Bikle DD, Schwartz J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front Endocrinol (Lausanne). 2019;10:317.
https://doi.org/10.3389/fendo.2019.00317
PMid:31191450 PMCid:PMC6546814
Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, et al. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev. 2006;58(4):742-59.
https://doi.org/10.1124/pr.58.4.6
PMid:17132852
Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, et al. The Spl transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7. Genomics. 1991;11:168-73.
https://doi.org/10.1016/0888-7543(91)90114-T
Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endocrinol. 2017;453:131-43.
https://doi.org/10.1016/j.mce.2017.05.035
PMid:28579120
Hii CS, Ferrante A. The Non-Genomic Actions of Vitamin D. Nutrients. 2016;8(3):135.
https://doi.org/10.3390/nu8030135
PMid:26950144 PMCid:PMC4808864
Christakos S. Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Rev Endocr Metab Disord. 2012;13(1):39-44.
https://doi.org/10.1007/s11154-011-9197-x
PMid:21861106
Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol. 2015;21(23):7142-54.
https://doi.org/10.3748/wjg.v21.i23.7142
PMid:26109800 PMCid:PMC4476875
Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K. Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol. 2013;180:86-97.
https://doi.org/10.1159/000346786
PMid:23652552
Hattenhauer O, Traebert M, Murer H, Biber J. Regulation of small intestinal Na-Pi type IIb cotransporter by dietary phosphate intake. Am J Physiol. 1999;277:G756-G62.
https://doi.org/10.1152/ajpgi.1999.277.4.G756
PMid:10516141
Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257-72.
https://doi.org/10.2215/CJN.09750913
PMid:25287933 PMCid:PMC4491294
Kurnik BRC, Hruska KA. Mechanism of stimulation of renal phosphate transport by 1,25-dihydroxycholecaiciferol. Biochimica et Biophysica Acta. 1985;817:42-50.
https://doi.org/10.1016/0005-2736(85)90066-5
Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 2013;154(3):1008-20.
https://doi.org/10.1210/en.2012-1542
PMid:23389957
Yoshida T, Stern PH. How vitamin D works on bone. Endocrinol Metab Clin North Am. 2012;41(3):557-69.
https://doi.org/10.1016/j.ecl.2012.04.003
PMid:22877429
Khundmiri SJ, Murray RD, Lederer E. PTH and Vitamin D. Compr Physiol. 2016;6(2):561-601.
https://doi.org/10.1002/cphy.c140071
PMid:27065162
Hewison M. Vitamin D and immune function: an overview. Proc Nutr Soc. 2012;71(1):50-61.
https://doi.org/10.1017/S0029665111001650
PMid:21849106
Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5(7):2502-21.
https://doi.org/10.3390/nu5072502
PMid:23857223 PMCid:PMC3738984
Djukic M, Onken ML, Schutze S, Redlich S, Gotz A, Hanisch UK, et al. Vitamin d deficiency reduces the immune response, phagocytosis rate, and intracellular killing rate of microglial cells. Infect Immun. 2014;82(6):2585-94.
https://doi.org/10.1128/IAI.01814-14
PMid:24686054 PMCid:PMC4019194
Lang PO, Aspinall R. Vitamin D status and the host resistance to infections: What it is currently (not) understood. Clin Ther. 2017;39(5):930-45.
https://doi.org/10.1016/j.clinthera.2017.04.004
PMid:28457494
Gunville CF, Mourani PM, Ginde AA. The role of vitamin D in prevention and treatment of infection. Inflamm Allergy Drug Targets. 2013;12(4):239-45.
https://doi.org/10.2174/18715281113129990046
PMid:23782205 PMCid:PMC3756814
Melamed ML, Michos ED, Post W, Astor B. 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med. 2008;168(15):1629-37.
https://doi.org/10.1001/archinte.168.15.1629
PMid:18695076 PMCid:PMC2677029
Bordon Y. Asthma and allergy: Vitamin D primes neonatal immune system. Nat Rev Immunol. 2017;17(8):467.
https://doi.org/10.1038/nri.2017.82
Alswailmi FK, Sikandar MZ, Shah SIA. Biological roles of vitamin D and immunoglobulin E: Implications in allergic disorders. Pak J Med Health Sci. 2020;14(3):495-8.
Alswailmi FK, Shah SIA, Nawaz H. Immunomodulatory role of vitamin D: Clinical implications in infections and autoimmune disorders. Gomal J Med Sci. 2020;18(3):132-8.
https://doi.org/10.46903/gjms/18.03.841
Shah SIA. Beneficial role of vitamin D in common cancers: Is the evidence compelling enough? World Cancer Res J. 2020;7:e1574.
Shalayel MH, Al-Mazaideh GM, Aladaileh SH, Alswailmi FK, Al-Thiabat MG. Vitamin D is a potential inhibitor of COVID-19: In silico molecular docking to the binding site of SARS-CoV-2 endoribonuclease Nsp15. Pak J Pharm Sci. 2020;33(5):2179-86.
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-73, Table of Contents.
https://doi.org/10.1128/CMR.00046-08
PMid:19366914 PMCid:PMC2668232
Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 2013;37(4):284-91.
https://doi.org/10.1152/advan.00058.2013
PMid:24292903 PMCid:PMC4089092
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76.
https://doi.org/10.1146/annurev.immunol.21.120601.141126
PMid:12524386
Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol. 2014;5:151.
https://doi.org/10.3389/fphys.2014.00151
PMid:24795646 PMCid:PMC4000998
Mosaad YM, Mostafa M, Elwasify M, Youssef HM, Omar NM. Vitamin D and immune system. Vitam Miner. 2017;6(1):1000151.
Wang TT, Dabbas B, Laperriere D, Bitton AJ, Soualhine H, Tavera-Mendoza LE, et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. 2010;285(4):2227-31.
https://doi.org/10.1074/jbc.C109.071225
PMid:19948723 PMCid:PMC2807280
Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ. 2005;12(10):1297-309.
https://doi.org/10.1038/sj.cdd.4401651
PMid:15905882
Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564-72.
https://doi.org/10.1681/ASN.2013040355
PMid:24204002 PMCid:PMC3935584
Cross JH, Bradbury RS, Fulford AJ, Jallow AT, Wegmuller R, Prentice AM, et al. Oral iron acutely elevates bacterial growth in human serum. Sci Rep. 2015;5:16670.
https://doi.org/10.1038/srep16670
PMid:26593732 PMCid:PMC4655407
Harle D, Radmark O, Samuelsson B, Steinhilber D. Calcitriol and transforming growth factor-β upregulate 5-lipoxygenase mRNA expression by increasing gene transcription and mRNA maturation. Eur J Biochem. 1998;254:275-81.
https://doi.org/10.1046/j.1432-1327.1998.2540275.x
PMid:9660180
Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol. 2006;36(2):361-70.
https://doi.org/10.1002/eji.200425995
PMid:16402404
Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275-306.
https://doi.org/10.1146/annurev.immunol.23.021704.115633
PMid:15771572
Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685-711.
https://doi.org/10.1146/annurev.immunol.21.120601.141040
PMid:12615891
Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Eliopoulos AG, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170(11):5382-90.
https://doi.org/10.4049/jimmunol.170.11.5382
PMid:12759412
Hewison M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am. 2010;39(2):365-79, table of contents.
https://doi.org/10.1016/j.ecl.2010.02.010
PMid:20511058 PMCid:PMC2879394
Lemire JM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125(6 Suppl):1704S-8S.
https://doi.org/10.1016/0960-0760(95)00106-A
Colin EM, Asmawidjaja PS, van Hamburg JP, Mus AM, van Driel M, Hazes JM, et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 2010;62(1):132-42.
https://doi.org/10.1002/art.25043
PMid:20039421
Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19(6):362-71.
https://doi.org/10.1016/j.smim.2007.10.007
PMid:18035554 PMCid:PMC2839934
Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem. 2010;285(50):38751-5.
https://doi.org/10.1074/jbc.C110.185777
PMid:20974859 PMCid:PMC2998156
Urry Z, Xystrakis E, Richards DF, McDonald J, Sattar Z, Cousins DJ, et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1alpha,25-dihydroxyvitamin D3 abrogates regulatory function. J Clin Invest. 2009;119(2):387-98.
https://doi.org/10.1172/JCI32354
PMid:19139565 PMCid:PMC2631286
Adorini L, Penna G, Giarratana N, Roncari A, Amuchastegui S, Daniel KC, et al. Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands. J Steroid Biochem Mol Biol. 2004;89-90(1-5):437-41.
https://doi.org/10.1016/j.jsbmb.2004.03.013
PMid:15225816
Cheroutre H, Lambolez F. Doubting the TCR coreceptor function of CD8alphaalpha. Immunity. 2008;28(2):149-59.
https://doi.org/10.1016/j.immuni.2008.01.005
PMid:18275828
Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT. Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci U S A. 2008;105(52):20834-9.
https://doi.org/10.1073/pnas.0808700106
PMid:19095793 PMCid:PMC2634903
Sakem B, Nock C, Stanga Z, Medina P, Nydegger UE, Risch M, et al. Serum concentrations of 25-hydroxyvitamin D
and immunoglobulins in an older Swiss cohort: results of the Senior Labor Study. BMC Med. 2013;11:176.
https://doi.org/10.1186/1741-7015-11-176
PMid:23902738 PMCid:PMC3751655
Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634-47.
https://doi.org/10.4049/jimmunol.179.3.1634
PMid:17641030

Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).