Review On the Effects of Curcumin on Tumors of the Reproductive System

  • Zahra Moradi 1. Shahid Beheshti University of Medical Sciences, Tehran, Iran http://orcid.org/0000-0002-0785-5285
  • Yasaman Hekmatnia 2. Islamic Azad University of Medical Science, Sari, Mazandaran, Iran
  • Amin Dalili 3. Surgical Oncology Research Center, Mashhad University of Medical Science, Mashhad, Iran
  • Mostafa Sadeghi 4. Department of Operating Room, Montaserieh Dialysis and Transplant Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • Seyed Sina Neshat 5. Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Sheida Jamalnia 6. Shiraz University of Medical Sciences, Shiraz, Iran
  • Mostafa Tohidian 1. Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Elnaz Reihani 7. Molecular cell biology, Hakim Sabzevari university, Sabzevar, Iran
Keywords: Curcumin, Reproduction, Cancer, Tumor, Prostate, Ovary, Breast

Abstract

Curcumin, a polyphenolic derivative of Curcuma longa rhizome, has numerous beneficial effects, including antibacterial, anti-inflammatory, antiviral, antioxidant, antifungal, anti-ischemic, anti-cancer, hypoglycemic, nephroprotective, antirheumatic, hepato-protective, and antimutagenic. Curcumin has indicated the capability to exert anti-cancer activity by multifunctional mechanisms, such as induction of apoptosis, inhibition of cancer cell proliferation, cell cycle regulation, chemotherapeutic intestinal absorption, and modification of several cancer cell types signaling pathways. Several studies have shown that curcumin may have protective effects against tumors of the reproductive system. Reproductive system cancers may cause many undesirable physical and, especially, mental disorders. Infertility and its mental consequences, sexual problems, chemotherapy and surgery-related adverse effects, substantial economic burden, and death are the most common complications regarding the cancers of the reproductive system. By modulating several reproductive cancer hallmarks such as signaling pathways, multiple drug resistance, cancer cell growth and proliferation, tumor angiogenesis, and transcription factors, curcumin could be used as a safe, non-toxic, cheap, and easily accessible drug for treating different types of reproductive cancers. [GMJ.2021;10:e2178]

References

Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1-2):72-9.

https://doi.org/10.1016/j.jep.2005.05.011

PMid:16009521

Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55(2):65-70.

Mohebbati R, Anaeigoudari A, Khazdair M. The effects of Curcuma longa and curcumin on reproductive systems. Endocr Regul. 2017;51(4):220-8.

https://doi.org/10.1515/enr-2017-0024

PMid:29232190

Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants & redox signaling. 2008;10(3):511-46.

https://doi.org/10.1089/ars.2007.1769

PMid:18370854

Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nature Reviews Cardiology. 2014;11(2):123.

https://doi.org/10.1038/nrcardio.2013.140-c1

PMid:24395048

Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, et al. Curcumin: A new candidate for melanoma therapy? Int J Cancer. 2016;139(8):1683-95.

https://doi.org/10.1002/ijc.30224

PMid:27280688

Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, et al. Treatment of non‐alcoholic fatty liver disease with curcumin: A randomized placebo‐controlled trial. Phytother Res. 2016;30(9):1540-8.

https://doi.org/10.1002/ptr.5659

PMid:27270872

Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial. Chin J Integr Med. 2015;21(5):332-8.

https://doi.org/10.1007/s11655-015-2160-z

PMid:25776839

Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75-e6.

https://doi.org/10.1016/j.fertnstert.2010.07.1071

PMid:20797714

Ciftci O, Tanyildizi S, Godekmerdan A. Protective effect of curcumin on immune system and body weight gain on rats intoxicated with 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD). Immunopharmacol Immunotoxicol. 2010;32(1):99-104.

https://doi.org/10.3109/08923970903164318

PMid:19821784

Valsalam S, Agastian P, Esmail GA, Ghilan A-KM, Al-Dhabi NA, Arasu MV. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J Photochem Photobiol B: Biol. 2019;201:111670.

https://doi.org/10.1016/j.jphotobiol.2019.111670

PMid:31706087

Valsalam S, Agastian P, Arasu MV, Al-Dhabi NA, Ghilan A-KM, Kaviyarasu K, et al. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B: Biol. 2019;191:65-74.

https://doi.org/10.1016/j.jphotobiol.2018.12.010

PMid:30594044

Aggarwal BB, Surh Y-J, Shishodia S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media; 2007.

https://doi.org/10.1007/978-0-387-46401-5

PMid:17569205

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18.

https://doi.org/10.1021/mp700113r

PMid:17999464

Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102-12.

https://doi.org/10.1016/j.biopha.2016.11.098

PMid:27930973

Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978;43(2):86-92.

https://doi.org/10.1111/j.1600-0773.1978.tb02240.x

PMid:696348

Bhavanishankar T, Shantha N, Ramesh H, Indira Murthy A, Sreenivasa Murthy V. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol. 1980;18(1):73-5.

Soni K, Kutian R. EFFECf OF ORAL CURCUMIN ADMINISTRAnON ON SERUM PEROXIDES AND CHOLESTEROL LEVELS IN HUMAN VOLUNTEERS. Indian J Physiol Phannacoll992. 1992;36(4):273-5.

Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847-54.

https://doi.org/10.1158/1078-0432.CCR-04-0744

PMid:15501961

Program NT. NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1)(major component 79%-85% curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 1993;427:1-275.

Farombi EO, Abarikwu SO, Adedara IA, Oyeyemi MO. Curcumin and kolaviron ameliorate di‐n‐butylphthalate‐induced testicular damage in rats. Basic Clin. Pharmacol. Toxicol.. 2007;100(1):43-8.

https://doi.org/10.1111/j.1742-7843.2007.00005.x

PMid:17214610

Cort A, Timur M, Ozdemir E, Kucuksayan E, Ozben T. Synergistic anticancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells. Mol Med Report. 2012;5(6):1481-6.

https://doi.org/10.3892/mmr.2012.991

PMid:22825355

Sahoo DK, Roy A, Chainy GB. Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chem. Biol. Interact.. 2008;176(2-3):121-8.

https://doi.org/10.1016/j.cbi.2008.07.009

PMid:18723006

Aktas C, Kanter M, Erboga M, Ozturk S. Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health. 2012;28(2):122-30.

https://doi.org/10.1177/0748233711407242

PMid:21632575

Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis. 2012;33(12):2507-19.

https://doi.org/10.1093/carcin/bgs312

PMid:23042094

Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270(42):24995-5000.

https://doi.org/10.1074/jbc.270.42.24995

PMid:7559628

Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, et al. Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J Immunol. 1999;163(6):3474-83.

Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101(3):1053-62.

https://doi.org/10.1182/blood-2002-05-1320

PMid:12393461

Piccolella M, Crippa V, Messi E, Tetel MJ, Poletti A. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacol. Res.. 2014;79:13-20.

https://doi.org/10.1016/j.phrs.2013.10.002

PMid:24184124

Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276-308.

https://doi.org/10.1210/er.2002-0032

PMid:15082523

Richter E, Srivastava S, Dobi A. Androgen receptor and prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(2):114-8.

https://doi.org/10.1038/sj.pcan.4500936

PMid:17297502

Aggarwal BB. Prostate cancer and curcumin: add spice to your life. Cancer Biol Ther. 2008;7(9):1436-40.

https://doi.org/10.4161/cbt.7.9.6659

PMid:18769126

Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955-68.

https://doi.org/10.1016/j.ejca.2005.05.009

PMid:16081279

Banerjee S, Singh SK, Chowdhury I, Lillard Jr JW, Singh R. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Front Biosci. 2017;9:235.

https://doi.org/10.2741/e798

PMid:28199187

Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou J, et al. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. J Exp Clin Cancer Res. 2015;34(1):1-11.

https://doi.org/10.1186/s13046-015-0168-z

PMid:25971429 PMCid:PMC4446835

Sharma V, Kumar L, Mohanty SK, Maikhuri JP, Rajender S, Gupta G. Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor-synergistic action of quercetin and curcumin. Mol Cell Endocrinol. 2016;431:12-23.

https://doi.org/10.1016/j.mce.2016.04.024

PMid:27132804

Wang R, Sun Y, Li L, Niu Y, Lin W, Lin C, et al. Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9® to suppress enzalutamide-resistant prostate cancer progression. Eur Urol. 2017;72(5):835-44.

https://doi.org/10.1016/j.eururo.2017.04.005

PMid:28528814 PMCid:PMC5802348

Tsui KH, Feng TH, Lin CM, Chang PL, Juang HH. Curcumin blocks the activation of androgen and interlukin‐6 on prostate‐specific antigen expression in human prostatic carcinoma cells. J. Androl.. 2008;29(6):661-8.

https://doi.org/10.2164/jandrol.108.004911

PMid:18676361

Choi HY, Lim J, Hong JH. Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis. 2010;13(4):343-9.

https://doi.org/10.1038/pcan.2010.26

PMid:20680030

Dorai T, Gehani N, Katz A. Therapeutic potential of curcumin in human prostate cancer-I. Curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer Prostatic Dis. 2000;3(2):84-93.

https://doi.org/10.1038/sj.pcan.4500399

PMid:12497104

García-Aranda M, Redondo M. Protein kinase targets in breast cancer. Int J Mol Sci. 2017;18(12):2543.

https://doi.org/10.3390/ijms18122543

PMid:29186886 PMCid:PMC5751146

Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res Treat. 2002;76(1):27-36.

https://doi.org/10.1023/A:1020299707510

PMid:12408373

Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS. 2001;98(19):10869-74.

https://doi.org/10.1073/pnas.191367098

PMid:11553815 PMCid:PMC58566

Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, Mazzarol G, et al. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat Med. 2012;18(4):529.

https://doi.org/10.1038/nm.2645

PMid:22388088

Jason CY, Formenti SC. Integration of radiation and immunotherapy in breast cancer-Treatment implications. The Breast. 2018;38:66-74.

https://doi.org/10.1016/j.breast.2017.12.005

PMid:29253718

Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer. Mol. Med. Rep. 2019;19(1):23-9.

https://doi.org/10.3892/mmr.2018.9665

Nejati-Koshki K, Akbarzadeh A, Pourhassan-Moghaddam M. Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors. Cancer Cell Int. 2014;14(1):1-7.

https://doi.org/10.1186/1475-2867-14-66

PMid:25866478 PMCid:PMC4392783

Hallman K, Aleck K, Dwyer B, Lloyd V, Quigley M, Sitto N, et al. The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERα) in breast cancer cells. Breast Cancer (London). 2017;9:153.

https://doi.org/10.2147/BCTT.S125783

PMid:28331366 PMCid:PMC5354546

Lai H-W, Chien S-Y, Kuo S-J, Tseng L-M, Lin H-Y, Chi C-W, et al. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: an in vitro and in vivo comparison study with herceptin. Evid Based Complement Alternat Med. 2012;2012.

https://doi.org/10.1155/2012/486568

PMid:21876713 PMCid:PMC3162976

Verma SP, Salamone E, Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun. 1997;233(3):692-6.

https://doi.org/10.1006/bbrc.1997.6527

PMid:9168916

Karunagaran D, Rashmi R, Kumar T. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets. 2005;5(2):117-29.

https://doi.org/10.2174/1568009053202081

PMid:15810876

Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? The AAPS journal. 2009;11(3):495-510.

https://doi.org/10.1208/s12248-009-9128-x

PMid:19590964 PMCid:PMC2758121

Sikora E, Bielak-Żmijewska A, Magalska A, Piwocka K, Mosieniak G, Kalinowska M, et al. Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Mol Cancer Ther. 2006;5(4):927-34.

https://doi.org/10.1158/1535-7163.MCT-05-0360

PMid:16648563

Shehzad A, Qureshi M, Anwar MN, Lee YS. Multifunctional curcumin mediate multitherapeutic effects. J Food Sci. 2017;82(9):2006-15.

https://doi.org/10.1111/1750-3841.13793

PMid:28771714

Arablou T, Kolahdouz-Mohammadi R. Curcumin and endometriosis: Review on potential roles and molecular mechanisms. Biomed Pharmacother. 2018;97:91-7.

https://doi.org/10.1016/j.biopha.2017.10.119

PMid:29080464

Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan İH, et al. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev Res 2018;11(1):59-67.

https://doi.org/10.1158/1940-6207.CAPR-16-0289

PMid:29089332

McClay EF, Albright KD, Jones JA, Eastman A, Christen R, Howell SB. Modulation of cisplatin resistance in human malignant melanoma cells. Cancer Res. 1992;52(24):6790-6.

Mc Clay EF, Albright KD, Jones JA, Christen RD, Howell SB. Tamoxifen modulation of cisplatin sensitivity in human malignant melanoma cells. Cancer Res. 1993;53(7):1571-6.

Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer. 2009;9(6):415-28.

https://doi.org/10.1038/nrc2644

PMid:19461667 PMCid:PMC2814299

Vaughan S, Coward JI, Bast RC, Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer. 2011;11(10):719-25.

https://doi.org/10.1038/nrc3144

PMid:21941283 PMCid:PMC3380637

Stewart C, Ralyea C, Lockwood S, editors. Ovarian cancer: an integrated review. Seminars in oncology nursing; 2019: Elsevier.

https://doi.org/10.1016/j.soncn.2019.02.001

PMid:30867104

Shi M, Cai Q, Yao L, Mao Y, Ming Y, Ouyang G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int. 2006;30(3):221-6.

https://doi.org/10.1016/j.cellbi.2005.10.024

PMid:16376585

Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M et al. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther. 2007;6(2):178-84.

https://doi.org/10.4161/cbt.6.2.3577

PMid:17218783 PMCid:PMC1852522

Yen H-Y, Tsao C-W, Lin Y-W, Kuo C-C, Tsao C-H, Liu C-Y. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep. 2019;9(1):1-14.

https://doi.org/10.1038/s41598-019-53509-3

PMid:31754130 PMCid:PMC6872918

Chock KL, Allison JM, Shimizu Y, ElShamy WM. BRCA1-IRIS overexpression promotes cisplatin resistance in ovarian cancer cells. Cancer Res. 2010;70(21):8782-91.

https://doi.org/10.1158/0008-5472.CAN-10-1352

PMid:20940403

K Tiwari A, Sodani K, Dai C-L, R Ashby C, Chen Z-S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12(4):570-94.

https://doi.org/10.2174/138920111795164048

PMid:21118094

Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin Cancer Res. 2007;13(11):3423-30.

https://doi.org/10.1158/1078-0432.CCR-06-3072

PMid:17545551

Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928-39.

https://doi.org/10.1021/mp800240j

PMid:19278222

Published
2021-12-19
How to Cite
Moradi, Z., Hekmatnia, Y., Dalili, A., Sadeghi, M., Neshat, S. S., Jamalnia, S., Tohidian, M., & Reihani, E. (2021). Review On the Effects of Curcumin on Tumors of the Reproductive System . Galen Medical Journal, 10, e2178. https://doi.org/10.31661/gmj.v10i0.2178
Section
Review Article