Change in Programmed Death-1 And Inducible Costimulator Expression in Patients with Acute Myeloid Leukemia Following Chemotherapy and Its Cytogenetic Abnormalities
Abstract
Background: Programmed death-1 (PD-1) and inducible costimulator (ICOS) are immune checkpoint receptors participating in tumor immune evasion, which counters the activation signal provided through the T-cell receptor ligation. This study aimed to investigate the relationship between the expression of PD-1 and ICOS on mononuclear cells (MNCs) isolated from the peripheral blood of acute myeloid leukemia (AML) patients and their response to induction chemotherapy. Materials and Methods: Peripheral blood samples (5cc) were collected from 56 AML patients at first diagnosis before and after the induction therapy regimen for AML. PD-1 and ICOS expression were analyzed in all patients before and after the standard induction therapy regimen. Results: The expression of PD-1 and ICOS significantly decreased (66.7 and 16.3 fold, respectively) in AML patients following chemotherapy compared to its baseline value (P=0.01 and P=0.001, respectively). The expressions of PD-1 and ICOS were significantly different between favorable and poor risk groups. Conclusions: Lower PD-1 and ICOS expressions on the surface of MNCs before induction therapy were associated with a better response to treatments. In addition, PD-1 and ICOS expression on MNCs decreased after induction therapy.References
Rotchanapanya W, Hokland P, Tunsing P, Owattanapanich W. Clinical Outcomes Based on Measurable Residual Disease Status in Patients with Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. J Pers Med. 2020;10(4):250.
https://doi.org/10.3390/jpm10040250
PMid:33256157 PMCid:PMC7711894
Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88(4):318-27.
https://doi.org/10.1002/ajh.23404
PMid:23526416
Yanada M, Garcia-Manero G, Borthakur G, Ravandi F, Kantarjian H, Estey E. Relapse and death during first remission in acute myeloid leukemia. Haematologica. 2008;93(4):633-4.
https://doi.org/10.3324/haematol.12366
PMid:18379012
Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136-52.
https://doi.org/10.1056/NEJMra1406184
PMid:26376137
Gupta V, Tallman MS, Weisdorf DJ. Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns. Blood. 2011;117(8):2307-18.
https://doi.org/10.1182/blood-2010-10-265603
PMid:21098397
Shah A, Andersson TM, Rachet B, Bjorkholm M, Lambert PC. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study. Br J Haematol. 2013;162(4):509-16.
https://doi.org/10.1111/bjh.12425
PMid:23786647
Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol. 2016;103:62-77.
https://doi.org/10.1016/j.critrevonc.2016.04.020
PMid:27247119
Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562-9.
https://doi.org/10.1200/JCO.2009.23.8329
PMid:20026804
Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006;27(4):195-201.
https://doi.org/10.1016/j.it.2006.02.001
PMid:16500147
Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015-29.
https://doi.org/10.1084/jem.20090847
PMid:20008522 PMCid:PMC2806460
Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007;13(7):2151-7.
https://doi.org/10.1158/1078-0432.CCR-06-2746
PMid:17404099
Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood. 2009;114(8):1545-52.
https://doi.org/10.1182/blood-2009-03-206672
PMid:19417208 PMCid:PMC2731636
Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N et al. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother. 2010;59(12):1839-49.
https://doi.org/10.1007/s00262-010-0909-y
PMid:20814675 PMCid:PMC2945474
Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74(3):665-74.
https://doi.org/10.1158/0008-5472.CAN-13-0992
PMid:24336068
O'Neill NA, Zhang T, Braileanu G, Cheng X, Hershfeld A, Sun W et al. Pilot study of delayed ICOS/ICOS-L blockade with αCD40 to modulate pathogenic alloimmunity in a primate cardiac allograft model. Transplant Direct. 2018;4(2).
https://doi.org/10.1097/TXD.0000000000000761
PMid:29464205 PMCid:PMC5811273
Burlion A, Brunel S, Petit NY, Olive D, Marodon G. Targeting the Human T-Cell Inducible COStimulator Molecule with a Monoclonal Antibody Prevents Graft-vs-Host Disease and Preserves Graft vs Leukemia in a Xenograft Murine Model. Front Immunol. 2017;8:756.
https://doi.org/10.3389/fimmu.2017.00756
PMid:28713380 PMCid:PMC5491549
Begna KH, Ali W, Naseema G, Elliott MA, Al-Kali A, Litzow MR et al. Mayo Clinic experience with 1123 adults with acute myeloid leukemia. Blood Cancer J. 2021;11(3):46.
https://doi.org/10.1038/s41408-021-00435-1
PMid:33654065 PMCid:PMC7925511
de Greef GE, van Putten WL, Boogaerts M, Huijgens PC, Verdonck LF, Vellenga E et al. Criteria for defining a complete remission in acute myeloid leukaemia revisited. An analysis of patients treated in HOVON-SAKK co-operative group studies. Br J Haematol. 2005;128(2):184-91.
https://doi.org/10.1111/j.1365-2141.2004.05285.x
PMid:15638852
Schmohl JU, Nuebling T, Wild J, Kroell T, Kanz L, Salih HR et al. Expression of RANK-L and in part of PD-1 on blasts in patients with acute myeloid leukemia correlates with prognosis. Eur J Haematol. 2016;97(6):517-27.
https://doi.org/10.1111/ejh.12762
PMid:27096305
Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153(1):145-52.
https://doi.org/10.1016/j.clim.2014.04.010
PMid:24780173
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64. doi:10.1038/nrc3239.
https://doi.org/10.1038/nrc3239
PMid:22437870 PMCid:PMC4856023
Miller PL, Carson TL. Mechanisms and microbial influences on CTLA-4 and PD-1-based immunotherapy in the treatment of cancer: a narrative review. Gut Pathog. 2020;12(1):43.
https://doi.org/10.1186/s13099-020-00381-6
PMid:32944086 PMCid:PMC7488430
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl J Med. 2012;366(26):2443-54.
https://doi.org/10.1056/NEJMoa1200690
PMid:22658127 PMCid:PMC3544539
Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134-44.
https://doi.org/10.1056/NEJMoa1305133
PMid:23724846 PMCid:PMC4126516
Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15(10):3325-32.
https://doi.org/10.1158/1078-0432.CCR-08-3010
PMid:19417016 PMCid:PMC3700356
Lichtenegger FS, Lorenz R, Gellhaus K, Hiddemann W, Beck B, Subklewe M. Impaired NK cells and increased T regulatory cell numbers during cytotoxic maintenance therapy in AML. Leuk Res. 2014;38(8):964-9.
https://doi.org/10.1016/j.leukres.2014.05.014
PMid:24957413
Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med. 2011;3(111):111ra20.
https://doi.org/10.1126/scitranslmed.3003130
PMid:22133721 PMCid:PMC3235958
Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311-9.
https://doi.org/10.1056/NEJMoa1411087
PMid:25482239 PMCid:PMC4348009
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122-33.
https://doi.org/10.1056/NEJMoa1302369
PMid:23724867 PMCid:PMC5698004
Zhang W, Bai JF, Zuo MX, Cao XX, Chen M, Zhang Y et al. PD-1 expression on the surface of peripheral blood CD4+ T cell and its association with the prognosis of patients with diffuse large B-cell lymphoma. Cancer Med. 2016;5(11):3077-84.
https://doi.org/10.1002/cam4.874
PMid:27709793 PMCid:PMC5119962
MacFarlane AWt, Jillab M, Plimack ER, Hudes GR, Uzzo RG, Litwin S et al. PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol Res. 2014;2(4):320-31.
https://doi.org/10.1158/2326-6066.CIR-13-0133
PMid:24764579 PMCid:PMC4007343
Liersch R, Muller-Tidow C, Berdel WE, Krug U. Prognostic factors for acute myeloid leukaemia in adults--biological significance and clinical use. Br J Haematol. 2014;165(1):17-38.
https://doi.org/10.1111/bjh.12750
PMid:24484469
Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol. 2009;40(12):1715-22.
https://doi.org/10.1016/j.humpath.2009.03.025
PMid:19695683
Richendollar BG, Pohlman B, Elson P, Hsi ED. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42(4):552-7.
https://doi.org/10.1016/j.humpath.2010.08.015
PMid:21237493
Smeltzer JP, Jones JM, Ziesmer SC, Grote DM, Xiu B, Ristow KM et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res. 2014;20(11):2862-72.
https://doi.org/10.1158/1078-0432.CCR-13-2367
PMid:24727328 PMCid:PMC4058762
Yang ZZ, Grote DM, Ziesmer SC, Xiu B, Novak AJ, Ansell SM. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer Journal. 2015;5(2):e281.
https://doi.org/10.1038/bcj.2015.1
PMid:25700246 PMCid:PMC4349259
Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009;27(9):1470-6.
https://doi.org/10.1200/JCO.2008.18.0513
PMid:19224853
Adom D, Dillon SR, Yang J, Liu H, Ramadan A, Kushekhar K et al. ICOSL+ plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist. Sci Transl Med. 2020;12(564).
https://doi.org/10.1126/scitranslmed.aay4799
PMid:33028709 PMCid:PMC7811191
Saadi MI, Yaghobi R, Karimi MH, Geramizadeh B, Ramzi M, Zakerinia M. Association of the costimulatory molecule gene polymorphisms and active cytomegalovirus infection in hematopoietic stem cell transplant patients. Mol Biol Rep. 2013;40(10):5833-42.
https://doi.org/10.1007/s11033-013-2689-x
PMid:24057239
Dolen Y, Esendagli G. Myeloid leukemia cells with a B7‐2+ subpopulation provoke Th‐cell responses and become immuno‐suppressive through the modulation of B7 ligands. Eur J Immunol. 2013;43(3):747-57.
https://doi.org/10.1002/eji.201242814
PMid:23175469

Copyright (c) 2022 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).