The Functionality of Apigenin as a Novel Cardioprotective Nutraceutical with Emphasize on Regulating Cardiac Micro RNAs
Abstract
Cardiovascular diseases (CVDs) are considered the most common disorder and the leading cause of mortality globally. The etiology of CVDs depends on a variety of genetic and acquired parameters. Nowadays, a dramatic surge appeared in published reports to find the association between microRNAs (miRNAs) and CVDs in order to understand the cause of the disease, rapid diagnosis with the introduction of valid biomarkers, and target as a therapeutic approach. Apigenin is a novel nutraceutical flavonoid that cardioprotective properties are suggested. The current review aimed to evaluate the beneficial features of this phytochemical against CVDs with an emphasis on its ability to regulate the miRNAs. The findings demonstrated that Apigenin could regulate cardiac miRNAs, including miR-103, miR-122-5p, miR-15b, miR-155, and miR-33. Consequently, preventing CVDs is possible through different effects such as the promotion of cholesterol efflux, prevention of hyperlipidemia, alteration in ATP Binding Cassette Subfamily A Member 1 (ABCA1) levels, reducing of cardiocytes apoptosis, and retarding myocytes fibrosis. Also, it can regulate signaling pathways, protect against endothelial dysfunction, maintain oxidative balance, and decrease inflammatory factors and reactive oxygen species. Hence, apigenin regulatory characteristics affecting miRNAs expression could introduce this flavonoid as a novel cardioprotective phytochemical against different CVDs.References
Afzal M. Recent updates on novel therapeutic targets of cardiovascular diseases. Mol Cell Biochem. 2021;476(1):145-55.
https://doi.org/10.1007/s11010-020-03891-8
PMid:32845435
Şahin B, İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc Care Community. 2022;30(1):73-80.
https://doi.org/10.1111/hsc.13156
PMid:32909378
Rottapel RE, Hudson LB, Folta SC. Cardiovascular health and African-American women: A qualitative analysis. Am J Health Behav. 2021;45(4):735-45.
https://doi.org/10.5993/AJHB.45.4.12
PMid:34340740
Bassey IE, Akpan UO, Nehemiah ED, Arekong R, Okonkwo OL, Udoh AE. Cardiovascular Disease Risk Factors and Cardiac Markers among Male Cement Workers in Calabar, Nigeria. Journal of Chemical Health Risks. 2017;7(2):85-94.
Kazibwe J, Tran PB, Annerstedt KS. The household financial burden of non-communicable diseases in low-and middle-income countries: a systematic review. Health Res Policy Syst. 2021;19(1):1-15.
https://doi.org/10.1186/s12961-021-00732-y
PMid:34154609 PMCid:PMC8215836
Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43(8):716-99.
https://doi.org/10.1093/eurheartj/ehab892
PMid:35016208
Efremova O, Kamyshnikova L, Veysalov S, Sviridova M, Obolonkova N, Gayvoronskaya M, et al. Investigation on the Association of Cardiovascular Markers with Severity of Chronic Pyelonephritis. Arch Razi Inst. 2022;77(1):315-21.
Rezaei M, Sanagoo A, Jouybari L, Behnampoo N, Kavosi A. The effect of probiotic yogurt on blood glucose and cardiovascular biomarkers in patients with type II diabetes: a randomized controlled trial. Evid Based Care J. 2017;6(4):26-35.
Blaum C, Brunner FJ, Kröger F, Braetz J, Lorenz T, Goßling A, et al. Modifiable lifestyle risk factors and C-reactive protein in patients with coronary artery disease: Implications for an anti-inflammatory treatment target population. Eur J Prev Cardiol. 2021;28(2):152-8.
https://doi.org/10.1177/2047487319885458
PMid:33838040
Mannoh I, Hussien M, Commodore-Mensah Y, Michos ED. Impact of social determinants of health on cardiovascular disease prevention. Curr Opin Cardiol. 2021;36(5):572-9.
https://doi.org/10.1097/HCO.0000000000000893
PMid:34397464
Ndejjo R, Musinguzi G, Nuwaha F, Bastiaens H, Wanyenze RK. Understanding factors influencing uptake of healthy lifestyle practices among adults following a community cardiovascular disease prevention programme in Mukono and Buikwe districts in Uganda: A qualitative study. PLoS One. 2022;17(2):e0263867.
https://doi.org/10.1371/journal.pone.0263867
PMid:35176069 PMCid:PMC8853581
Elkoustaf RA, Nwaokoro M, Lahti DA, Yao JF, Gin N, Cotter TM, et al. Bridging the Gender Divide in Cardiovascular Rehabilitation: a Work in Progress. J Am Coll Cardiol. 2022;79(9_Supplement):1596.
https://doi.org/10.1016/S0735-1097(22)02587-6
Joseph P, Kutty VR, Mohan V, Kumar R, Mony P, Vijayakumar K, et al. Cardiovascular disease, mortality, and their associations with modifiable risk factors in a multi-national South Asia cohort: a PURE substudy. Eur Heart J. 2022;43(30):2831-40.
https://doi.org/10.1093/eurheartj/ehac249
PMid:35731159
Pederiva C, Capra ME, Biasucci G, Banderali G, Fabrizi E, Gazzotti M, et al. Lipoprotein (a) and family history for cardiovascular disease in paediatric patients: A new frontier in cardiovascular risk stratification. Data from the LIPIGEN paediatric group. Atherosclerosis. 2022;349:233-9.
https://doi.org/10.1016/j.atherosclerosis.2022.04.021
PMid:35562202
Andergassen D, Rinn JL. From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet. 2022;23(4):229-43.
https://doi.org/10.1038/s41576-021-00427-8
PMid:34837040
Fang Y, Dai X. Emerging roles of extracellular non-coding RNAs in vascular diseases. J Cardiovasc Transl Res. 2022:1-8.
https://doi.org/10.1007/s12265-022-10237-w
PMid:35460016
Tanase DM, Gosav EM, Petrov D, Teodorescu D-S, Buliga-Finis ON, Ouatu A, et al. MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci. 2022;23(9):5254.
https://doi.org/10.3390/ijms23095254
PMid:35563643 PMCid:PMC9101033
Wronska A. The role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease-Recent Developments. Journal of Pharmacology and Experimental Therapeutics. 2022.
https://doi.org/10.1124/jpet.121.001152
PMid:35779862
Altintaş N, Onur T, Yilmaz ÖS. Effects of microRNAs in hypertension disease. The Euro Res J. 2022;8(1):131-8.
https://doi.org/10.18621/eurj.855796
Improta-Caria AC. Physical Exercise and MicroRNAs: Molecular Mechanisms in Hypertension and Myocardial Infarction. Arq Bras Cardiol. 2022;118:1147-9.
https://doi.org/10.36660/abc.20210538
PMid:35703656 PMCid:PMC9345150
Li H, Chen M, Feng Q, Zhu L, Bai Z, Wang B, et al. MicroRNA‐34a in coronary heart disease: Correlation with disease risk, blood lipid, stenosis degree, inflammatory cytokines, and cell adhesion molecules. J Clin Lab Anal. 2022;36(1):e24138.
https://doi.org/10.1002/jcla.24138
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. Med Review. 2022;2(9):140-68.
https://doi.org/10.1515/mr-2021-0001
Santovito D, Weber C. Non-canonical features of microRNAs: Paradigms emerging from cardiovascular disease. Nat Rev Cardiol. 2022:1-19.
https://doi.org/10.1038/s41569-022-00680-2
PMid:35304600
Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Failure. 2021;8(1):222-37.
https://doi.org/10.1002/ehf2.13144
PMid:33319509 PMCid:PMC7835562
Abbasi A, Movahedpour A, Amiri A, Najaf MS, Mostafavi-Pour Z. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr Mol Med. 2021;21(4):332-46.
https://doi.org/10.2174/18755666MTA5dNjU2w
https://doi.org/10.2174/1566524020666200903120344
PMid:32881669
Samare-Najaf M, Samareh A, Jamali N, Abbasi A, Clark CC, Khorchani MJ, et al. Adverse Effects and Safety of Etirinotecan Pegol, a Novel Topoisomerase Inhibitor, in Cancer Treatment: A Systematic Review. Curr Cancer Ther Rev. 2021;17(3):234-43.
https://doi.org/10.2174/1573394717666210202103502
Jafari Khorchani M, Samare-Najaf M, Abbasi A, Vakili S, Zal F. Effects of quercetin, vitamin E, and estrogen on Metabolic-Related factors in uterus and serum of ovariectomized rat models. Gynecol Endocrinol. 2021;37(8):764-8.
https://doi.org/10.1080/09513590.2021.1879784
PMid:33525940
Samare-Najaf M, Zal F, Safari S. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model. Reprod Toxicol. 2020;96:316-26.
https://doi.org/10.1016/j.reprotox.2020.07.015
PMid:32810592
Samare-Najaf M, Zal F, Safari S, Koohpeyma F, Jamali N. Stereological and histopathological evaluation of doxorubicin-induced toxicity in female rats' ovary and uterus and palliative effects of quercetin and vitamin E. Hum Exp Toxicol. 2020;39(12):1710-24.
https://doi.org/10.1177/0960327120937329
PMid:32666839
Jamali N, Kazemi A, Saffari-Chaleshtori J, Samare-Najaf M, Mohammadi V, Clark CC. The effect of cinnamon supplementation on lipid profiles in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Complement Ther Med. 2020;55:102571.
https://doi.org/10.1016/j.ctim.2020.102571
PMid:33220625
Jamali N, Zal F, Mostafavi-Pour Z, Samare-Najaf M, Poordast T, Dehghanian A. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats. Reprod Sci. 2021;28(3):683-92.
https://doi.org/10.1007/s43032-020-00377-2
PMid:33141412
Jamali N, Soureshjani EH, Mobini G-R, Samare-Najaf M, Clark CC, Saffari-Chaleshtori J. Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study. J Biomol Struct Dyn. 2021:1-12.
https://doi.org/10.1080/07391102.2021.1906749
PMid:33970805
Da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRDA, De Oliveira Lima MF, et al. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother. 2022;151:113131.
https://doi.org/10.1016/j.biopha.2022.113131
PMid:35643067
Jamali N, Jalali M, Saffari-Chaleshtori J, Samare-Najaf M, Samareh A. Effect of cinnamon supplementation on blood pressure and anthropometric parameters in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Diabetes Metab Syndr. 2020;14(2):119-25.
https://doi.org/10.1016/j.dsx.2020.01.009
PMid:32032898
Fan Z-k, Wang C, Yang T, Li X, Guo X, Li D. Flavonoid subclasses and CHD risk: a meta-analysis of prospective cohort studies. Br J Nutr. 2021:1-11.
https://doi.org/10.1017/S0007114521003391
PMid:34470681
Li Xq, Wang C, Yang T, Fan Zk, Guo Xf. A meta‐analysis of prospective cohort studies of flavonoid subclasses and stroke risk. Phytother Res. 2022;36(3):1103-14.
https://doi.org/10.1002/ptr.7376
PMid:35023220
Lee Y, Im E. Regulation of miRNAs by natural antioxidants in cardiovascular diseases: Focus on SIRT1 and eNOS. Antioxidants. 2021;10(3):377.
https://doi.org/10.3390/antiox10030377
PMid:33802566 PMCid:PMC8000568
Shao D, Lian Z, Di Y, Zhang L, Zhang Y, Kong J, et al. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. npj Sci of Food. 2018;2(1):1-9.
https://doi.org/10.1038/s41538-018-0022-8
PMid:31304263 PMCid:PMC6550192
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean diet: From dietary sources to microRNA modulation. Antioxidants. 2021;10(2):328.
https://doi.org/10.3390/antiox10020328
PMid:33672251 PMCid:PMC7926722
Alrekabi DG, Hamad MN. Phytochemical investigation of Sonchus oleraceus (Family: Asteraceae) cultivated in Iraq, isolation and identification of quercetin and Apigenin. J Pharm Sci. 2018;10(9):2242-8.
Gao R, Lou Q, Hao L, Qi G, Tian Y, Pu X, et al. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. PlJ. 2022;109(5):1305-18.
https://doi.org/10.1111/tpj.15634
PMid:34907610
Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, et al. The therapeutic potential of Apigenin. Int J Mol Sci. 2019;20(6):1305.
https://doi.org/10.3390/ijms20061305
PMid:30875872 PMCid:PMC6472148
Grumezescu AM, Holban AM. Therapeutic, probiotic, and unconventional foods. Elsevier; 2018.
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423-35.
https://doi.org/10.3945/an.116.012948
PMid:28507008 PMCid:PMC5421117
Mahajan UB, Chandrayan G, Patil CR, Arya DS, Suchal K, Agrawal YO, et al. The protective effect of Apigenin on myocardial injury in diabetic rats mediating activation of the PPAR-γ pathway. Int J Mol Sci. 2017;18(4):756.
https://doi.org/10.3390/ijms18040756
PMid:28375162 PMCid:PMC5412341
Liu H-J, Fan Y-L, Liao H-H, Liu Y, Chen S, Ma Z-G, et al. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Biochem. 2017;428(1):9-21.
https://doi.org/10.1007/s11010-016-2913-9
PMid:28176247
Cardenas H, Arango D, Nicholas C, Duarte S, Nuovo GJ, He W, et al. Dietary apigenin exerts immune-regulatory activity in vivo by reducing NF-κB activity, halting leukocyte infiltration and restoring normal metabolic function. Int J Mol Sci. 2016;17(3):323.
https://doi.org/10.3390/ijms17030323
PMid:26938530 PMCid:PMC4813185
Li D, Ma J, Wang L, Xin S. Apigenin prevent abdominal aortic aneurysms formation by inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol. 2020;75(3):229-39.
https://doi.org/10.1097/FJC.0000000000000785
PMid:31821190
Ihm S-H, Park S-H, Lee J-O, Kim O-R, Park E-H, Kim K-R, et al. A Standardized Lindera obtusiloba Extract Improves Endothelial Dysfunction and Attenuates Plaque Development in Hyperlipidemic ApoE-Knockout Mice. Plants. 2021;10(11):2493.
https://doi.org/10.3390/plants10112493
PMid:34834858 PMCid:PMC8618780
Samsonov MV, Podkuychenko NV, Khapchaev AY, Efremov EE, Yanushevskaya EV, Vlasik TN, et al. AICAR Protects Vascular Endothelial Cells from Oxidative Injury Induced by the Long-Term Palmitate Excess. Int J Mol Sci. 2021;23(1):211.
https://doi.org/10.3390/ijms23010211
PMid:35008640 PMCid:PMC8745318
Little PJ, Askew CD, Xu S, Kamato D. Endothelial dysfunction and cardiovascular disease: history and analysis of the clinical utility of the relationship. Biomedicines. 2021;9(6):699.
https://doi.org/10.3390/biomedicines9060699
PMid:34203043 PMCid:PMC8234001
Miao X, Jin C, Zhong Y, Feng J, Yan C, Xia X, et al. Data-independent acquisition-based quantitative proteomic analysis reveals the protective effect of Apigenin on palmitate-induced lipotoxicity in human aortic endothelial cells. J. Agric. Food Chem. J Agr Food Chem. 2020;68(33):8836-46.
https://doi.org/10.1021/acs.jafc.0c03260
PMid:32687348
Yamagata K, Hashiguchi K, Yamamoto H, Tagami M. Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide. J Cardiovasc Pharmacol. 2019;74(6):558-65.
https://doi.org/10.1097/FJC.0000000000000747
PMid:31815868
Jiang L, Qiao Y, Wang Z, Ma X, Wang H, Li J. Inhibition of microRNA‐103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN‐mediated MAPK signaling. J Cell Physiol. 2020;235(1):380-93.
https://doi.org/10.1002/jcp.28979
PMid:31232476
Wang J-X, Zhang X-J, Li Q, Wang K, Wang Y, Jiao J-Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 2015;117(4):352-63.
https://doi.org/10.1161/CIRCRESAHA.117.305781
PMid:26038570
Zaafan MA, Abdelhamid AM. The cardioprotective effect of microRNA-103 inhibitor against isoprenaline-induced myocardial infarction in mice through targeting FADD/RIPK pathway. Eur Rev Med Pharmacol Sci. 2021;25(2):837-44
Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, et al. MiR‐103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV 3 channel in rat hearts. J Cell Mol Med. 2019;23(3):1926-39.
https://doi.org/10.1111/jcmm.14095
PMid:30604587 PMCid:PMC6378213
Wang Z, Zhang H, Liu Z, Ma Z, An D, Xu D. Apigenin attenuates myocardial infarction-induced cardiomyocyte injury by modulating Parkin-mediated mitochondrial autophagy. J Biosci. 2020;45(1):1-9.
https://doi.org/10.1007/s12038-020-00047-0
Badacz R, Kleczyński P, Legutko J, Żmudka K, Gacoń J, Przewłocki T, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events. Biomedicines. 2021;9(8):1055.
https://doi.org/10.3390/biomedicines9081055
PMid:34440258 PMCid:PMC8391895
Šatrauskienė A, Navickas R, Laucevičius A, Krilavičius T, Užupytė R, Zdanytė M, et al. Mir-1, miR-122, miR-132, and miR-133 are related to subclinical aortic atherosclerosis associated with metabolic syndrome. Int J Environ Res. 2021;18(4):1483.
https://doi.org/10.3390/ijerph18041483
PMid:33557426 PMCid:PMC7915826
Shi Y, Zhang Z, Yin Q, Fu C, Barszczyk A, Zhang X, et al. Cardiac‐specific overexpression of miR‐122 induces mitochondria‐dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med. 2021;25(11):5326-34.
https://doi.org/10.1111/jcmm.16544
PMid:33942477 PMCid:PMC8178264
Liu Y, Song J-W, Lin J-Y, Miao R, Zhong J-C. Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc Toxicol. 2020;20(5):463-73.
https://doi.org/10.1007/s12012-020-09603-4
PMid:32856216 PMCid:PMC7451782
Feng W, Ying Z, Ke F, Mei-Lin X. Apigenin suppresses TGF-β1-induced cardiac fibroblast differentiation and collagen synthesis through the downregulation of HIF-1α expression by miR-122-5p. Phytomedicine. 2021;83:153481.
https://doi.org/10.1016/j.phymed.2021.153481
PMid:33607460
Wang F, Zhang J, Niu G, Weng J, Zhang Q, Xie M, Li C, Sun K. Apigenin inhibits isoproterenol-induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR-122-5p/155-5p expressions. Drug Dev Res. 2022;83(4):1003-15.
https://doi.org/10.1002/ddr.21928
PMid:35277868
Zhu Y, Yang T, Duan J, Mu N, Zhang T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany N Y). 2019;11(4):1089-109.
https://doi.org/10.18632/aging.101766
PMid:30787203 PMCid:PMC6402525
Niu S, Xu L, Yuan Y, Yang S, Ning H, Qin X, et al. Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochem Biophys Res Commun. 2020;530(1):54-9.
https://doi.org/10.1016/j.bbrc.2020.06.111
PMid:32828315
Wang P, Sun J, Lv S, Xie T, Wang X. Apigenin alleviates myocardial reperfusion injury in rats by downregulating miR-15b. Med Sci Monit. 2019;25:2764.
https://doi.org/10.12659/MSM.912014
PMid:30983593 PMCid:PMC6481235
Faccini J, Ruidavets J-B, Cordelier P, Martins F, Maoret J-J, Bongard V, et al. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci Rep. 2017;7(1):1-10.
https://doi.org/10.1038/srep42916
PMid:28205634 PMCid:PMC5311865
Qiu X-K, Ma J. Alteration in microRNA-155 level correspond to severity of coronary heart disease. Scand J Clin Lab Invest. 2018;78(3):219-23.
https://doi.org/10.1080/00365513.2018.1435904
PMid:29411649
Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, et al. Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep. 2020;40(3):BSR20191653.
https://doi.org/10.1042/BSR20191653
PMid:32124924 PMCid:PMC7080642
Wang F, Fan K, Zhao Y, Xie M-L. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. J Ethnopharmacol. 2021;265:113195.
https://doi.org/10.1016/j.jep.2020.113195
PMid:32800930
Wang H, Bei Y, Huang P, Zhou Q, Shi J, Sun Q, et al. Inhibition of miR-155 protects against LPS-induced cardiac dysfunction and apoptosis in mice. Mol Ther Nucleic Acids. 2016;5:e374.
https://doi.org/10.1038/mtna.2016.80
PMid:27727247 PMCid:PMC5095684
Arango D, Diosa‐Toro M, Rojas‐Hernandez LS, Cooperstone JL, Schwartz SJ, Mo X, et al. Dietary Apigenin reduces LPS‐induced expression of miR‐155 restoring immune balance during inflammation. Mol Nutr Food Res. 2015;59(4):763-72.
https://doi.org/10.1002/mnfr.201400705
PMid:25641956 PMCid:PMC7955240
Reddy LL, Shah SA, Ponde CK, Rajani RM, Ashavaid TF. Circulating miRNA-33: a potential biomarker in patients with coronary artery disease. Biomarkers. 2019;24(1):36-42.
https://doi.org/10.1080/1354750X.2018.1501760
PMid:30022694
Xie Z, Ma P. MiR-33 may be a Biological Marker for Coronary Heart Disease. J Clin Lab. 2018;64(10):1755-60.
https://doi.org/10.7754/Clin.Lab.2018.180538
PMid:30336533
Chen Z, Ding H-S, Guo X, Shen J-J, Fan D, Huang Y, et al. MiR-33 promotes myocardial fibrosis by inhibiting MMP16 and stimulating p38 MAPK signaling. Oncotarget. 2018;9(31):22047.
https://doi.org/10.18632/oncotarget.25173
PMid:29774121 PMCid:PMC5955156
Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, et al. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep. 2018;22(8):2133-45.
https://doi.org/10.1016/j.celrep.2018.01.074
PMid:29466739 PMCid:PMC5860817
Afonso MS, Sharma M, Schlegel M, Van Solingen C, Koelwyn GJ, Shanley LC, et al. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ Res. 2021;128(8):1122-38.
https://doi.org/10.1161/CIRCRESAHA.120.317914
PMid:33593073 PMCid:PMC8049965
Ren K, Jiang T, Zhou H-F, Liang Y, Zhao G-J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol Biochem. 2018;47(5):2170-84.
https://doi.org/10.1159/000491528
PMid:29975943

Copyright (c) 2022 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).