The Crosstalk Between Autophagy and MicroRNAs in Esophageal Carcinoma

  • Neda Gorjizadeh Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
  • Sahar Poudineh School of Medicine, Mashhad Azad University, Mashhad, Iran
  • Behnaz Barghgir Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud , Iran
  • Mohammadreza Eghbali Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Alireza Sarlak Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Maryam poudineh School of Medicine, Mashhad Azad University, Mashhad, Iran
Keywords: Autophagy, microRNAs, Cancer, Esophageal Carcinoma, Squamous Cell Carcinoma, Therapy


Esophageal cancer (EC) is considered one of the most prevalent and aggressive malignancies worldwide, with a variety of molecular alterations thought to contribute to its incidence, development, progression, and invasion. However, the exact underlying mechanism has not been elucidated. Autophagy is a highly conserved degradative and recycling process that can function with a dual role in either the progression or the treatment of EC. Since microRNAs (miRNAs) are described as upstream regulators capable of controlling both oncogenic pathways and autophagic flux, the present study has aimed to review the crosstalk between autophagy and miRNAs and the potential perspective of these mechanisms in EC prevention and treatment.


Liu W, Xie L, He Y-H, Wu Z-Y, Liu L-X, Bai X-F et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun. 2021;12(1):1-18.

PMid:34400640 PMCid:PMC8368010

Gronnier C, Collet D. New Trends in Esophageal Cancer Management. MDPI. 2021;13(12): 3030.

PMid:34204314 PMCid:PMC8235022

Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040 new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163(3):649-58.


Li N, Wu P, Shen Y, Yang C, Zhang L, Chen Y et al. Predictions of mortality related to four major cancers in China, 2020 to 2030. Cancer Commun. 2021;41(5):404-13.

PMid:33660417 PMCid:PMC8118592

Abnet CC, Arnold M, Wei W-Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360-73.

PMid:28823862 PMCid:PMC5836473

Ingelfinger JR, Rustgi A, El-Serag H. Esophageal carcinoma. N Engl J Med. 2014;371(26):2499-509.


Salem ME, Puccini A, Xiu J, Raghavan D, Lenz HJ, Korn WM et al. Comparative molecular analyses of esophageal squamous cell carcinoma, esophageal adenocarcinoma, and gastric adenocarcinoma. The oncol. 2018;23(11):1319-27.

PMid:29866946 PMCid:PMC6291329

Tian B, Liu J, Zhang N, Song Y, Xu Y, Xie M et al. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1α. Oncogene. 2021;40(21):3734-47.


Abbasi A, Movahedpour A, Amiri A, Najaf MS, Mostafavi-Pour Z. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr Mol Med. 2021;21(4):332-46.


Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233.

PMid:32370233 PMCid:PMC7247559

Shapiro J, Van Lanschot JJB, Hulshof MC, van Hagen P, van Berge Henegouwen MI, Wijnhoven BP et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090-8.


Wightman B, Ha I. Wightman, Ha, Ruvkun-1993-Cell-Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern. PDF Cell. 1993; 75:855-62.


Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic regulation of microRNAs in cancer: shortening the distance from bench to bedside. Int J Mol Sci. 2021;22(14):7350.

PMid:34298969 PMCid:PMC8306710

Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14(10):1326-34.

PMid:26853707 PMCid:PMC5711461

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018; 9:402.

PMid:30123182 PMCid:PMC6085463

Rani V, Sengar RS. Biogenesis and mechanisms of microRNA‐mediated gene regulation. Biotechnol Bioeng. 2022;119(3):685-92.


Santovito D, Weber C. Non-canonical features of microRNAs: Paradigms emerging from cardiovascular disease. Nat Rev Cardiol. 2022:1-19.


Mayya VK. Understanding molecular mechanisms of microRNA-mediated gene silencing. McGill University: Canada; 2021.

Pandita D. Role of miRNA technology and miRNAs in abiotic and biotic stress resilience. Plant Perspectives to Global Climate Changes. Elsevier; 2022:303-30.

Huang V. Endogenous miRNAa: miRNA-mediated gene upregulation. RNA Activation. Springer; 2017: 65-79.


Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta. 2021; 516:46-54.


Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524-9.

PMid:12434020 PMCid:PMC137750

Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol. 2017; 7:65.

PMid:28459042 PMCid:PMC5394422

Kirkin V. History of the selective autophagy research: how did it begin and where does it stand today? J Mol Biol. 2020;432(1):3-27.

PMid:31082435 PMCid:PMC6971693

Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19(9):579-93.


Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603-14.

PMid:16286508 PMCid:PMC2171557

Zhou J, Li X-Y, Liu Y-J, Feng J, Wu Y, Shen H-M et al. Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy. 2021:1-16.

PMid:34662529 PMCid:PMC9225210

Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 2018; 104:485-95.


Ashrafizadeh M, Zarrabi A, Orouei S, Hushmandi K, Hakimi A, Zabolian A et al. MicroRNA-mediated autophagy regulation in cancer therapy: the role in chemoresistance/chemosensitivity. Eur J Pharmacol. 2021; 892:173660.


Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016;30(17):1913-30.

PMid:27664235 PMCid:PMC5066235

Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672-6.


Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100(25):15077-82.

PMid:14657337 PMCid:PMC299911

Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S et al. Autophagy Opposes p53-Mediated Tumor Barrier to Facilitate Tumorigenesis in a Model of PALB2-Associated Hereditary Breast CancerAutophagy Promotes Breast Cancer Development. Cancer Discov. 2013;3(8):894-907.

PMid:23650262 PMCid:PMC3740014

Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25(8):795-800.

PMid:21498569 PMCid:PMC3078705

White E. The role for autophagy in cancer. J Clin Investig. 2015;125(1):42-6.

PMid:25654549 PMCid:PMC4382247

Lock R, Kenific CM, Leidal AM, Salas E, Debnath J. Autophagy-Dependent Production of Secreted Factors Facilitates Oncogenic RAS-Driven InvasionAutophagy-Dependent Secretion and Invasion. Cancer Discov. 2014;4(4):466-79.

PMid:24513958 PMCid:PMC3980002

Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155(6):1216-9.

PMid:24315093 PMCid:PMC3987898

Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528-42.

PMid:28751651 PMCid:PMC5975367

Lin Z, Chen Y, Lin Y, Lin H, Li H, Su X et al. Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Sci Rep. 2020;10(1):1-11.

PMid:33208781 PMCid:PMC7676265

Zhao Y, Xu L, Wang X, Niu S, Chen H, Li C. A novel prognostic mRNA/miRNA signature for esophageal cancer and its immune landscape in cancer progression. Mol Oncol. 2021;15(4):1088-109.

PMid:33463006 PMCid:PMC8024720

Shi Z-Z, Wang W-J, Chen Y-X, Fan Z-W, Xie X-F, Yang L-Y et al. The miR-1224-5p/TNS4/EGFR axis inhibits tumour progression in oesophageal squamous cell carcinoma. Cell Death Dis. 2020;11(7):1-13.

PMid:32732965 PMCid:PMC7393493

Zhang Q, Gan H, Song W, Chai D, Wu S. MicroRNA-145 promotes esophageal cancer cells proliferation and metastasis by targeting SMAD5. Scand J Gastroenterol. 2018;53(7):769-76.


Hall TM, Tétreault M-P, Hamilton KE, Whelan KA. Autophagy as a cytoprotective mechanism in esophageal squamous cell carcinoma. Curr Opin Pharmacol. 2018; 41:12-9.

PMid:29677645 PMCid:PMC6108938

Adam J. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169-75.

PMid:28052061 PMCid:PMC5651175

Du H, Che J, Shi M, Zhu L, Hang JB, Chen Z et al. Beclin 1 expression is associated with the occurrence and development of esophageal squamous cell carcinoma. Oncol Lett. 2017;14(6):6823-8.

PMid:29163702 PMCid:PMC5686516

Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC, García-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med. 2013; 65:750-64.


Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res. 2009;15(3):487-93.

PMid:19130303 PMCid:PMC2791489

Bai H, Inoue J, Kawano T, Inazawa J. A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers. Oncogene. 2012;31(40):4397-408.


Yamashita K, Miyata H, Makino T, Masuike Y, Furukawa H, Tanaka K et al. High expression of the mitophagy-related protein Pink1 is associated with a poor response to chemotherapy and a poor prognosis for patients treated with neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Ann Surg Oncol. 2017;24(13):4025-32.


Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol. 2008;33(3):461-8.

Yang P-W, Hsieh M-S, Chang Y-H, Huang P-M, Lee J-M. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget. 2017;8(53):91494.

PMid:29207660 PMCid:PMC5710940

Chen C, Chen S, Cao H, Wang J, Wen T, Hu X et al. Prognostic significance of autophagy-related genes within esophageal carcinoma. BMC Cancer. 2020;20(1):1-11.

PMid:34979993 PMCid:PMC8722274

Wu B-L, Wang D, Bai W-J, Zhang F, Zhao X, Yi Y et al. An integrative framework to identify cell death-related microRNAs in esophageal squamous cell carcinoma. Oncotarget. 2016;7(35):56758.

PMid:27462775 PMCid:PMC5302951

Chen F, Chu L, Li J, Shi Y, Xu B, Gu J et al. Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells. Thoracic cancer. 2020;11(3):570-80.

PMid:31922357 PMCid:PMC7049507

Meng L, Liu S, Ding P, Chang S, Sang M. Circular RNA ciRS‐7 inhibits autophagy of ESCC cells by functioning as miR‐1299 sponge to target EGFR signaling. J Cell Biochem. 2020;121(2):1039-49.


Mu Y, Wang Q, Tan L, Lin L, Zhang B. microRNA‑144 inhibits cell proliferation and invasion by directly targeting TIGAR in esophageal carcinoma. Oncol Lett. 2020;19(4):3079-88.

PMid:32256808 PMCid:PMC7074326

Feng J, Qi B, Guo L, Chen L-Y, Wei X-F, Liu Y-Z et al. miR-382 functions as a tumor suppressor against esophageal squamous cell carcinoma. World J Gastroenterol. 2017;23(23):4243.

PMid:28694664 PMCid:PMC5483498

Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 2018; 117:993-1001.


You L, Wang Z, Li H, Shou J, Jing Z, Xie J et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729-39.

PMid:25951043 PMCid:PMC4509450

Li M, Meng X, Li M. MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging (Albany N Y). 2020;12(12):12107.

PMid:32554852 PMCid:PMC7343473

Fujiwara N, Inoue J, Kawano T, Tanimoto K, Kozaki K-i, Inazawa J. miR-634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 2015;75(18):3890-901.


Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M. MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett. 2017; 390:126-36.


Chen Y, Lu Y, Ren Y, Yuan J, Zhang N, Kimball H et al. Starvation-induced suppression of DAZAP1 by miR-10b integrates splicing control into TSC2-regulated oncogenic autophagy in esophageal squamous cell carcinoma. Theranostics. 2020;10(11):4983.

PMid:32308763 PMCid:PMC7163442

Chen H, Yao X, Di X, Zhang Y, Zhu H, Liu S et al. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma. Cancer Lett. 2020; 483:114-26.


Akashi E, Fujihara S, Morishita A, Tadokoro T, Chiyo T, Fujikawa K et al. Effects of galectin-9 on apoptosis, cell cycle and autophagy in human esophageal adenocarcinoma cells. Oncol Rep. 2017;38(1):506-14.


Xiao S, Liu N, Yang X, Ji G, Li M. Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med. 2021; 164:58-75.


How to Cite
Gorjizadeh, N., Poudineh, S., Barghgir, B., Eghbali, M., Sarlak, A., & poudineh, M. (2023). The Crosstalk Between Autophagy and MicroRNAs in Esophageal Carcinoma. Galen Medical Journal, 12, e2903. Retrieved from
Review Article