Study of the Role of Dopamine Receptors in Streptozotocin-Induced Depressive-Like Behavior Using the Forced Swim Test Model
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-25.
https://doi.org/10.2337/diabetes.54.6.1615
PMid:15919781
L'Heveder R, Nolan T. International Diabetes Federation. Diabetes Res Clin Pract. 2013;101(3):349-51.
https://doi.org/10.1016/j.diabres.2013.08.003
PMid:24119591
Lenart L, Hodrea J, Hosszu A, Koszegi S, Zelena D, Balogh D et al. The role of sigma-1 receptor and brain-derived neurotrophic factor in the development of diabetes and comorbid depression in streptozotocin-induced diabetic rats. Psychopharmacology (Berl). 2016;233(7):1269-78.
https://doi.org/10.1007/s00213-016-4209-x
PMid:26809458
Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia. 2005;48(12):2460-9.
https://doi.org/10.1007/s00125-005-0023-4
PMid:16283246
Lloyd CE, Roy T, Nouwen A, Chauhan AM. Epidemiology of depression in diabetes: international and cross-cultural issues. J Affect Disord. 2012;142 Suppl:S22-9.
https://doi.org/10.1016/S0165-0327(12)70005-8
Park M, Katon WJ, Wolf FM. Depression and risk of mortality in individuals with diabetes: a meta-analysis and systematic review. Gen Hosp Psychiatry. 2013;35(3):217-25. https://doi.org/10.1016/j.genhosppsych.2013.01.006
PMid:23415577 PMCid:PMC3644308
Shrestha SS, Zhang P, Li R, Thompson TJ, Chapman DP, Barker L. Medical expenditures associated with major depressive disorder among privately insured working-age adults with diagnosed diabetes in the United States, 2008. Diabetes Res Clin Pract. 2013;100(1):102-10.
https://doi.org/10.1016/j.diabres.2013.02.002
PMid:23490596 PMCid:PMC5304910
Musselman DL, Betan E, Larsen H, Phillips LS. Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry. 2003;54(3):317-29.
https://doi.org/10.1016/S0006-3223(03)00569-9
Rubin RR, Ciechanowski P, Egede LE, Lin EH, Lustman PJ. Recognizing and treating depression in patients with diabetes. Curr Diab Rep. 2004;4(2):119-25.
https://doi.org/10.1007/s11892-004-0067-8
PMid:15035972
Peng WH, Lo KL, Lee YH, Hung TH, Lin YC. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci. 2007;81(11):933-8.
https://doi.org/10.1016/j.lfs.2007.08.003
PMid:17804020
Connor TJ, Kelliher P, Harkin A, Kelly JP, Leonard BE. Reboxetine attenuates forced swim test-induced behavioural and neurochemical alterations in the rat. Eur J Pharmacol. 1999;379(2-3):125-33.
https://doi.org/10.1016/S0014-2999(99)00492-6
Hirano S, Miyata S, Kamei J. Antidepressant-like effect of leptin in streptozotocin-induced diabetic mice. Pharmacol Biochem Behav. 2007;86(1):27-31.
https://doi.org/10.1016/j.pbb.2006.12.003
PMid:17258301
Caletti G, Olguins DB, Pedrollo EF, Barros HM, Gomez R. Antidepressant effect of taurine in diabetic rats. Amino Acids. 2012;43(4):1525-33.
https://doi.org/10.1007/s00726-012-1226-x
PMid:22302366
Gupta D, Kurhe Y, Radhakrishnan M. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system. Physiol Behav. 2014;129:73-8.
https://doi.org/10.1016/j.physbeh.2014.02.036
PMid:24582678
Wayhs CA, Manfredini V, Sitta A, Deon M, Ribas G, Vanzin C et al. Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect. Metab Brain Dis. 2010;25(3):297-304.
https://doi.org/10.1007/s11011-010-9211-0
PMid:20838862
Scholl JL, Renner KJ, Forster GL, Tejani-Butt S. Central monoamine levels differ between rat strains used in studies of depressive behavior. Brain Res. 2010;1355:41-51. https://doi.org/10.1016/j.brainres.2010.08.003
PMid:20696147 PMCid:PMC2946061
Trulson ME, Himmel CD. Decreased brain dopamine synthesis rate and increased [3H]spiroperidol binding in streptozotocin-diabetic rats. J Neurochem. 1983;40(5):1456-9.
https://doi.org/10.1111/j.1471-4159.1983.tb13590.x
Bitar M, Koulu M, Rapoport SI, Linnoila M. Diabetes-induced alteration in brain monoamine metabolism in rats. J Pharmacol Exp Ther. 1986;236(2):432-7.
PMid:2418197
Arias-Carrion O, Stamelou M, Murillo-Rodriguez E, Menendez-Gonzalez M, Poppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24. https://doi.org/10.1186/1755-7682-3-24
PMid:20925949 PMCid:PMC2958859
Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T et al. Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. J Neurosci. 2008;28(46):12032-8. https://doi.org/10.1523/JNEUROSCI.3446-08.2008
PMid:19005068
Arias-Carrion O, Poppel E. Dopamine, learning, and reward-seeking behavior. Acta Neurobiol Exp (Wars). 2007;67(4):481-8.
Robinson R, Krishnakumar A, Paulose CS. Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats. Cell Mol Neurobiol. 2009;29(3):365-72.
https://doi.org/10.1007/s10571-008-9328-4
PMid:19132528
Serri O, Renier G, Somma M. Effects of alloxan-induced diabetes on dopaminergic receptors in rat striatum and anterior pituitary. Horm Res. 1985;21(2):95-101.
https://doi.org/10.1159/000180032
PMid:3979949
D'Aquila PS, Collu M, Gessa GL, Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol. 2000;405(1-3):365-73.
https://doi.org/10.1016/S0014-2999(00)00566-5
Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64(3):327-37.
https://doi.org/10.1001/archpsyc.64.3.327
PMid:17339521
Khanam R, Pillai KK. Effect of chromium picolinate on modified forced swimming test in diabetic rats: involvement of serotonergic pathways and potassium channels. Basic Clin Pharmacol Toxicol. 2006;98(2):155-9.
https://doi.org/10.1111/j.1742-7843.2006.pto_288.x
PMid:16445588
Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari S, Dixit P et al. Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol Learn Mem. 2010;94(3):293-302.
https://doi.org/10.1016/j.nlm.2010.06.008
PMid:20620214
Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379-91.
https://doi.org/10.1016/0014-2999(78)90118-8
Gomez R, Barros HM. Ethopharmacology of the antidepressant effect of clonazepam in diabetic rats. Pharmacol Biochem Behav. 2000;66(2):329-35.
https://doi.org/10.1016/S0091-3057(00)00221-5
Shimomura Y, Shimizu H, Takahashi M, Sato N, Uehara Y, Suwa K et al. Changes in ambulatory activity and dopamine turnover in streptozotocin-induced diabetic rats. Endocrinology. 1988;123(6):2621-5.
https://doi.org/10.1210/endo-123-6-2621
PMid:3197638
Bradberry CW, Karasic DH, Deutch AY, Roth RH. Regionally-specific alterations in mesotelencephalic dopamine synthesis in diabetic rats: association with precursor tyrosine. J Neural Transm Gen Sect. 1989;78(3):221-9. https://doi.org/10.1007/BF01249231
PMid:2529883
Gupta D, Radhakrishnan M, Kurhe Y. 5HT3 receptor antagonist (ondansetron) reverses depressive behavior evoked by chronic unpredictable stress in mice: modulation of hypothalamic-pituitary-adrenocortical and brain serotonergic system. Pharmacol Biochem Behav. 2014;124:129-36.
https://doi.org/10.1016/j.pbb.2014.05.024
PMid:24909071
Ezzeldin E, Souror WA, El-Nahhas T, Soudi AN, Shahat AA. Biochemical and neurotransmitters changes associated with tramadol in streptozotocin-induced diabetes in rats. Biomed Res Int. 2014;2014:238780.
https://doi.org/10.1155/2014/238780
PMid:24971322 PMCid:PMC4058222
Lee M, Ryu YH, Cho WG, Kang YW, Lee SJ, Jeon TJ et al. Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse. 2015;69(9):453-60.
https://doi.org/10.1002/syn.21834
PMid:26089169
Refbacks
- There are currently no refbacks.